首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
In this research, a new thermal curing system, with two‐stage curing characteristics, has been designed. And the reaction behaviors of two different curing processes have been systematically studied. The non‐isothermal differential scanning calorimetry (DSC) test is used to discuss the curing reaction of two stages curing, and the data obtained from the curves are used to calculate the kinetic parameters. Kissinger‐Akahira‐Sunose (KAS) method is applied to determine activation energy (Ea) and investigate it as the change of conversion (α). Málek method is used to unravel the curing reaction mechanism. The results indicate that the curing behaviors of two different curing stages can be implemented successfully, and curing behavior is accorded with ?esták‐Berggren mode. The non‐isothermal DSC and Fourier transform infrared spectroscopy test results reveal that two different curing stages can be implemented successfully. Furthermore, the double x fitting method is used to determine the pre‐exponential factor (A), reaction order (m, n), and establish the kinetic equation. The fitting results between experiment curves and simulative curves prove that the kinetic equation can commendably describe the two different curing reaction processes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40711.  相似文献   

2.
A novel imidazole derivative (named as EMI‐g‐BGE) was synthesized through the reaction of 2‐ethyl‐4‐methyl imidazole (EMI) and butyl glycidyl ether (BGE) and characterized by elemental analysis, FTIR spectroscopy, and 1H NMR spectroscopy. The curing kinetic of diglycidyl ether of bisphenol A (DGEBA) epoxy resin with EMI‐g‐BGE as curing agent was studied by nonisothermal DSC technique at different heating rates. Dynamic DSC scans indicated that EMI‐g‐BGE was an effective curing agent of epoxy resin. The apparent activation energy Ea was 71.8 kJ mol?1 calculated through Kissinger method, and the kinetic parameters were determined by Málek method for the kinetic analysis of the thermal treatment obtained by DSC measurement. A two‐parameter (m, n) autocatalytic model (?esták‐Berggren equation) was found to be the most adequate selected kinetic model. In addition, the predicted curves from the kinetic model fit well with the nonisothermal DSC thermogram. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
A series of novel azo‐containing twin liquid crystalline (LC) epoxy monomers were cured with anhydrides without extra catalyst, and the curing kinetics was investigated by non‐isothermal differential scanning calorimetry (DSC) technique. The results showed that the effect of phase behavior on activation energy (Ea) was enormous, which increased first and then decreased quickly with the curing reaction processing. The chemical kinetic control and diffusion‐control mechanisms dominate the curing together, which gives large values of Ea. Azo group also served as a catalyst to accelerate the curing reaction. The curing mechanism was confirmed by the UV–Vis spectra of azo‐doped curing system in which the absorbance values at 366 nm and 475 nm changed with the curing reaction processing. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

4.
Unsaturated polyesters were synthesized based on ethylene glycol and maleic acid as unsaturated dicarboxylic acid, using a variety of saturated acids in the initial acid mixture, without or with different catalysts. The curing of the polyesters produced with styrene was studied using differential scanning calorimetry (DSC) under dynamic‐ and isothermal‐heating conditions. The FTIR spectra of the initial polyesters and cured polyesters were also determined. Curing is not complete at the end of DSC scan and the unreacted bonds were quantitatively determined from the FTIR spectra and by estimation based on literature data. The value of the mean degree of conversion (α) of all double bonds (styrene unit and maleate unit) was approximately α = 0.40. Using an appropriate kinetic model for the curing exotherm of polyesters, the activation energy (Ea), the reaction order (x) and the frequency factor (ko) were determined. Because the kinetic parameters (ie Ea, k, x) affect the kinetics in various different ways, the curves of degree of conversion versus time at various isothermal conditions are more useful to compare and characterize the curing of polyesters. The kinetic parameters are mainly influenced by the proportion of maleic acid in the polyesterification reaction mixture and secondarily by the residual polyesterification catalyst. The degree of conversion of already crosslinked polyesters is greatly increased by post‐curing them at elevated temperature and for a prolonged time. © 2002 Society of Chemical Industry  相似文献   

5.
The kinetic study on the effect of aromatic-connected carbamate (Ar-carbamate) on the curing reaction of phenyl glycidyl ether (PGE) catalyzed by tertiary amine was carried out through thermal analysis of the reaction by differential scanning calorimetry (DSC). By isothermal DSC analysis, the consumption rate of the epoxide group of PGE was found to be a first-order reaction in the presence of aromatic-connected carbamate in the reaction. It was found that the reaction system has a low activation energy (Ea = 4.63 kcal/mol) as compared to the system without Ar-carbamate (Ea = 6.89 kcal/mol). A reaction mechanism was proposed for this reaction system. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68:121–127, 1998  相似文献   

6.
It was found that the change of vulcameter torque in the end stage of curing period of natural rubber does not follow first‐order kinetics and can be expressed in a kinetic equation of . The reaction order n calculated by the above equation is in the range of 0.68–0.74. The rate constant of the end stage increases with a rise in temperature and is well satisfied with Arrherius equation, giving activation energy E = 79.321 kJ/mol. If whole curing period is treated by first‐order kinetics without a change of reaction order from n = 1 to n = 0.68–0.74, the values of torque in the end stage of curing period predicted with first‐order kinetics equation will be lower than that obtained from vulcameter. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 580–583, 2006  相似文献   

7.
A new curing agent containing maleimide and biphenyl moieties (MIBP) was synthesized by the condensation polymerization of 4,4′-bismethoxymethylbiphenyl and N-(4-hydroxyphenyl)maleimide (HPM). The chemical structure was characterized with Fourier transform infrared (FTIR) spectroscopy, and the molecular weight of the new curing agent was determined by gel permeation chromatography. Curing reactions of O-cresol formaldehyde epoxy (CNE) resin with MIBP were investigated under nonisothermal differential scanning calorimetry, and the exotherm exhibited two overlapping exothermic peaks during the curing process; this was demonstrated by FTIR traces. The Flynn–Wall–Ozawa and Friedman methods were used to examine the kinetic parameters and the kinetic models of the curing processes of the CNE/MIBP mixtures. Both reactions turned out to be nth-order curing mechanisms. Values of the reaction order (n) = 1.42 and activation energy (Ea) = 91.2 kJ/mol were obtained for the first reaction of the curing of the CNE/MIBP system, and values of n = 1.11 and Ea = 78.7 kJ/mol were obtained for the second reaction. The thermal properties of the cured resin were measured with thermogravimetric analysis, and the results show a high glass-transition temperature (Tg = 155°C), good thermal stability (temperature at 10% weight loss, under nitrogen and in air, ≈ 400 and 408°C, respectively), and high char yield (temperature = 800°C, char residue = 44.5% under nitrogen). These excellent thermal properties were due to the introduction of the maleimide and biphenyl groups of MIBP into the polymer structure. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
The study of the kinetics of the curing of isocyanate quasi‐prepolymers with water was performed by infrared spectroscopy and differential scanning calorimetry. The influence of the free isocyanate content, polyol functionality, and of the addition of an amine catalyst (2,2′‐dimorpholinediethylether) in the reaction kinetics and morphology of the final poly(urethane urea) was analyzed. A second‐order autocatalyzed model was successfully applied to reproduce the curing process under isothermal curing conditions, until gelation occurred. A kinetic model‐free approach was used to find the dependence of the effective activation energy (Ea) with the extent of cure, when the reaction was performed under nonisothermal conditions. The dependence of Ea with the reaction progress was different depending on the initial composition of the quasi‐prepolymer, which reveals the complexity of the curing process. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

9.
10.
The amino terminated polypropylenimine dendrimer (DAB‐dendri‐(NH2)4) was employed as a new nonlinear aliphatic curing agent for diglycidyl ether of bisphenol A (DGEBA). Nonisothermal curing reaction kinetics of DGEBA/DAB was investigated with a differential scanning calorimeter (DSC). The apparent reaction activation energy Ea is about 56.7 kJ/mol determined using the Kissinger equation, and a two‐parameter (m, n) autocatalytic model ([icirc]Sesták–Berggren equation) was confirmed to be able to well simulate the reaction kinetics in the light of the Málek method. In addition, the relation between reaction activation energy Ea and curing degree α was obtained by applying model‐free isoconversional analysis with the Kissinger‐Akahira‐Sunose (KAS) method. As α increases, Ea reduced quickly from >80 kJ/mol to ≈60 kJ/mol up to a ≈ 15%, then decreased slowly to 55 kJ/mol till a ~ 75%, and finally dropped to 44 kJ/mol at full conversion. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
A new organic–inorganic hybrid material was prepared through reactive blending of hydrogenated carboxylated nitrile rubber (HXNBR) with epoxycyclohexyl polyhedral oligomeric silsesquioxanes (epoxycyclohexyl POSS). The structure of the composite was characterized by Fourier transform infrared spectroscopy (FTIR) and solid‐state 13C Nuclear Magnetic Resonance spectra (solid‐state 13C‐NMR). The differential scanning calorimetry (DSC) at different heating rates was conducted to investigate the curing kinetics. A single overall curing process by an nth‐order function (1 ? α)n was considered, and multiple‐heating‐rate models (Kissinger, Flynn–Wall–Ozawa, and Crane methods) and the single‐heating‐rate model were employed. The apparent activation energy (Ea) obtained showed dependence on the POSS content and the heating rate (β). The overall reaction order n was practically constant and close to 1. The isoconversion Flynn–Wall–Ozawa method was also performed and fit well in the study. With the single‐heating‐rate model, the average Ea for the compound with a certain POSS content, 66.90–104.13 kJ/mol was greater than that obtained with Kissinger and Flynn–Wall–Ozawa methods. Furthermore, the calculated reaction rate (dα/dt) versus temperature curves fit with the experimental data. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
Bisphenol‐A glycidyl ether epoxy resin was modified using reactive poly(ethylene glycol) (PEO). Dynamic mechanical analysis showed that introducing PEO chains into the structure of the epoxy resin increased the mobility of the molecular segments of the epoxy network. Impact strength was improved with the addition of PEO at both room (RT) and cryogenic (CT, 77 K) temperature. The curing kinetics of the modified epoxy resin with polyoxypropylene diamines was examined by differential scanning calorimetry (DSC). Curing kinetic parameters were determined from nonisothermal DSC curves. Kinetic analysis suggested that the two‐parameter autocatalytic model suitably describes the kinetics of the curing reaction. Increasing the reactive PEO content decreased the heat flow of curing with little effect on activation energy (Ea), pre‐exponential factor (A), or reaction order (m and n). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
New thermoset with a high bio‐based content was synthesized by curing epoxidized soybean oil (ESO) with a green curing agent maleopimaric acid catalyzed by 2‐ethly‐4‐methylimidazole. Non‐isothermal differential scanning calorimetry and a relatively new integral isoconversional method were used to analyze the curing kinetic behaviors and determine the activation energy (Ea). The two‐parameter ?esták–Berggren autocatalytic model was applied in the mathematical modeling to obtain the reaction orders and the pro‐exponential factor. For anhydride/epoxy group molar ratio equal to 0.7, Ea decreased from 82.70 to 80.17 kJ/mol when increasing the amount of catalyst from 0.5 to 1.5 phr toward ESO. The reaction orders m and n were 0.4148 and 1.109, respectively. The predicted non‐isothermal curing rates of ?esták–Berggren model matched perfectly with the experimental data. © 2016 American Institute of Chemical Engineers AIChE J, 63: 147–153, 2017  相似文献   

14.
The present study investigated curing kinetic of epoxy/polyaminoamide/ZnO implementing isothermal differential scanning calorimetry (DSC) technique. Model free and model fitting methods were used to study the curing reaction kinetic. Isoconversional method results showed that the activation energies (Ea) of pure epoxy/polyaminoamide, epoxy/polyaminoamide/micro-ZnO, and epoxy/polyaminoamide/nano-ZnO systems remained constant in different conversions. Moreover, the model fitting method was used to determine the kinetic triplet, i.e., pre-exponential factor [A], activation energy [Ea], and reaction order [n] by simultaneous processing of all isothermal curing data. Both methods indicated a decrease in activation energy by adding ZnO as well as a decrease in the particle size from micro to nanoscale. This can be attributed to the catalytic effect of ZnO by forming a complex between Zn++ and oxygen of oxirane ring and carboxylate group in epoxy.  相似文献   

15.
Six fluorescent benzazolylvinylene derivatives were studied by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and related molecular parameters. The thermal stability was determined in terms of the steps of degradation and its fitting parameters, such as maximum degradation rate (Rmax), maximum degradation rate temperature (TRmax), degradation temperature range, which is related to the half‐width at half‐height values (Γ), and the kinetic parameters: activation energy (Ea), pre‐exponential factor (A), and reaction order (n) obtained by Barrett's method. Different organic substitutes and heteroatoms do not play a fundamental role in the thermal behavior of the studied dyes. The compensation effect between pre‐exponential factor and activation energy was confirmed. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 495–500, 2006  相似文献   

16.
This article focuses on the analysis of the curing kinetics of carbon‐fiber‐reinforced bismaleimide (BMI) composites during microwave (MW) curing. A nonisothermal differential scanning calorimetry (DSC) method was used to obtain an accurate kinetic model. The degree of curing, chemical characterization, and glass‐transition temperature of the resin and composites cured by thermal and MW heating were analyzed with DSC, Fourier transform infrared spectroscopy, and dynamic mechanical analysis. The experimental results indicate that MW accelerated the crosslinking reaction of the BMI resin and had different effects on the reaction processes, especially for the glass‐transition temperature and chemical bonds. However, the curing reaction rate of the BMI resin decreased when the carbon fibers were added to the BMI resin during thermal and MW curing. According to the experimental results, the curing kinetic model of the BMI composite was used to provide a theoretical foundation for MW curing analysis. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43770.  相似文献   

17.
The non‐isothermal degradation kinetics of the cured polymer samples of N,N′‐bismaleimide‐4,4′‐diphenylmethane/barbituric acid [BMI/BTA = 2/1 (mol/mol)] based polymers in the presence of hydroquinone (HQ) and native BMI/BTA was investigated by the thermogravimetric (TG) technique. By adding 5 wt % HQ into the BMI/BTA polymerization, the activation energy (Ea) of the thermal degradation process increased significantly in comparison with native BMI/BTA. Thus, the thermal stability of the cured polymer sample in the presence of HQ was greatly improved. The thermal degradation process exhibits three distinct stages. The key kinetic parameters associated with these stages were attained via the model‐fitting method. For the sample of native BMI/BTA, the thermal degradation process was primarily controlled by nucleation, followed by the multi‐decay law in the first stage. In contrast, the reaction order model adequately described the thermal degradation kinetics in the second stage. As to the last stage, the complex processes were described satisfactorily by the best‐fitted reaction model. For the sample of BMI/BTA/5 wt % HQ, the degradation process was controlled by the nucleation mechanism, followed by the multi‐molecular decay law in the first stage. In contrast, the second stage was controlled by the mixed mode of the competitive reaction order mechanism and 3‐D diffusion mechanism. In the third stage, the complex processes were also adequately described by the best‐fitted reaction model. All the experimental results illustrated that incorporation of 5 wt % HQ into the BMI/BTA based polymer resulted in the best thermal stability. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1923–1930, 2013  相似文献   

18.
The kinetics of the cure reaction for a system of bisphenol‐A epoxy resin (DGEBA), with 4, 4′‐diaminoazobenzene (DAAB), reinforced with nanosilica (NS), and nanoclay (NC) by means of isothermal technique of differential scanning calorimetry were studied. The Kamal autocatalytic‐like kinetic model was used to estimate the reaction orders (m, n), rate constants (k1, k2), and also active energies (Ea) and pre‐exponential factors (A) of the curing reaction. However, the existence of NS and NC with hydroxyl groups in the structure improves the cure reaction and influence the rate of reaction and therefore kinetics parameters. The Ea of cure reaction of DGEBA/DAAB system showed a decrease when nanoparticles were present and therefore the rate of the reaction was increased. Using the rate constants from the kinetic analysis and transition state theory, thermodynamic parameters such as enthalpy (ΔH#), entropy (ΔS#), and Gibbs free energy (ΔG#) changes were also calculated. The thermodynamic functions were shown to be very sensitive parameters for evaluation of the cure reaction. POLYM. COMPOS., 31:1442–1448, 2010. © 2009 Society of Plastics Engineers  相似文献   

19.
Two novel epoxy resins; namely, R1 and R2 were synthesized and characterized. These two resins were isomers and both contained naphthalene units and two symmetric flexible aliphatic ester chains terminated by epoxy groups. To investigate the influence of different structural isomers on the performance of these epoxy resins, they were both cured with various curing agents which results in the choosing of 4,4′-diaminodiphenylmethane (DDM) as the optimized curing agent. The curing technical temperature was obtained from extrapolated plots of T–β curve at different heating rates. The kinetic parameters, the activation energy (E a) and the reaction order (n) were deduced by Kissnger’s isoconversional method and Crane equation. The moisture absorption and mechanical and thermal properties of the cured epoxy resins were investigated. Experimental results indicated that the R1/DDM and R2/DDM epoxy resins displayed improved mechanical performance without significant decrease in their important inherent properties, e.g., temperature of glass transition (T g), moisture absorption and thermal properties when compared with the corresponding commercial biphenyl-type epoxy resins. The average inter-segment distances in R1/DDM and R2/DDM systems were 4.46 and 4.88 Å, respectively, which were measured by wide-angle X-ray diffraction. The result showed R1/DDM (1,5-di-substituted) was strongly hindered in comparison with R2/DDM (2,7-di-substituted) and E a and T g values of the R1/DDM were slightly higher than those of R2/DDM. Furthermore, mechanical properties and moisture absorption of the R1/DDM were lower than those of R2/DDM. Nevertheless, the position of the substituent only weakly affected the thermal properties and the reaction order (n).  相似文献   

20.
Interpenetrating polymer networks (IPNs) based on different ratios of a modified bismaleimide resin (BMI/DBA) and cyanate ester (b10) have been synthesized via prepolymerization followed by thermal curing. A systematic thermal degradation study of these new BMI/DBA‐CE IPN resin systems was conducted by thermogravimetric analysis at different heating rates both in N2 (thermal stability) and in air (thermal‐oxidative stability). The cured BMI/DBA‐CE IPN resin systems show excellent thermal stability, which could be demonstrated by 5% weight loss temperature (T5%) ranging between 409 and 423 °C, maximum decomposition rate temperature (Tmax) ranging between 423 and 451 °C, and the char yields at 800 °C ranging from 37% to 41% in nitrogen at a heating rate of 10 °C min?1. The apparent activation energy associated with the main degradation stage of the cured BMI/DBA‐CE IPN resin systems was determined using the Kissinger method. The obtained results provide useful information in drawing correlation between thermal properties and structure. © 2003 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号