首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper investigates the problem of robust ?? static output feedback controller design for a class of discrete‐time piecewise‐affine systems with norm‐bounded time‐varying parametric uncertainties. The objective is to design a piecewise‐linear static output feedback controller guaranteeing the asymptotic stability of the resulting closed‐loop system with a prescribed ?? disturbance attenuation level. Based on a piecewise Lyapunov function combined with S‐procedure, Projection lemma, and some matrix inequality convexifying techniques, several novel approaches to the static output feedback controller analysis and synthesis are developed for the underlying piecewise‐affine systems. It is shown that the controller gains can be obtained by solving a set of strict linear matrix inequalities (LMIs) or a family of LMIs parameterized by one or two scalar variables, which are numerically efficient with commercially available software. Finally, three simulation examples are provided to illustrate the effectiveness of the proposed approaches. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, the tracking problem for a class of discontinuous piecewise affine (PWA) systems is addressed. We propose an observer-based output-feedback control design, consisting of a feedforward, a piecewise affine feedback law and a model-based observer, solving the tracking problem. These synthesis results can also be employed to tackle the master-slave synchronisation problem for PWA systems. It is shown that for certain classes of PWA systems the design is characterised in terms of linear matrix inequalities. The results are illustrated by application to mechanical systems with discontinuous friction characteristics.  相似文献   

3.
This article investigates the consensus problem for positive multiagent systems via an observer‐based dynamic output‐feedback protocol. The dynamics of the agents are modeled by linear positive systems and the communication topology of the agents is expressed by an undirected connected graph. For the consensus problem, the nominal case is studied under the semidefinite programming framework while the robust and nonfragile cases are investigated under the linear programming framework. It is required that the distributed state‐feedback controller and observer gains should be structured to preserve the positivity of multiagent systems. Necessary and/or sufficient conditions for the analysis of consensus are obtained by using positive systems theory and graph theory. For the nominal case, necessary and sufficient conditions for the codesign of state‐feedback controller and observer of consensus are derived in terms of matrix inequalities. Sufficient conditions for the robust and nonfragile consensus designs are derived and the codesign of state‐feedback controller and observer can be obtained in terms of solving a set of linear programs. Numerical simulations are provided to show the effectiveness and applicability of the theoretical results and algorithms.  相似文献   

4.
A new configuration of a modified repetitive‐control system has been devised for a class of strictly proper plants that suppresses exogenous disturbances and uncertainties in the dynamics of the plant. It extends the applicability of the control system. The system consists of four parts: a two‐dimensional augmented model of the plant, which takes into account the difference in characteristics between continuous control and discrete learning in repetitive control; an equivalent‐input‐disturbance estimator; a state observer; and a state‐feedback controller. A robust‐stability condition expressed in terms of a linear matrix equality is used to determine the gains of the observer and the controller. Finally, a comparison of our method with repetitive control based on linear active disturbance rejection control (LADRC) shows how effective our method is and that it is superior to LADRC‐based repetitive control.  相似文献   

5.
The main contribution of this paper is to propose a convex formulation of sufficient conditions for both stability analysis and synthesis of stabilizing controllers for stochastic piecewise affine (PWA) systems with multiplicative noise. One of the main difficulties in PWA systems is the fact that the affine terms in the dynamics make it extremely difficult to formulate the synthesis problem as a convex optimization or even convex feasibility program. The presence of multiplicative noise modeled as a Wiener process adds an additional level of difficulty to the analysis and synthesis procedures. Sufficient conditions for stability of stochastic PWA slab systems in the mean square sense are developed first using a stochastic globally quadratic Lyapunov function. Second, PWA state feedback controllers are designed such that the closed‐loop system is stochastically exponentially mean square stable. The conditions for both stability and stabilization are formulated as LMIs, which can then be solved efficiently using currently available software packages. A numerical example shows the effectiveness of the approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
7.
In this paper, a model reference control strategy is proposed in order to perform trajectory tracking in Takagi–Sugeno–Lipschitz (TSL) systems. Since the state vector is assumed not to be completely available for measurement, a proportional observer is added to the control scheme in order to apply an estimate‐feedback control action instead of a state‐feedback one. The overall design of both the controller and the observer gains are performed using a Lyapunov‐based quadratic boundedness specification, in order to improve the robustness against unknown exogenous disturbances. It is shown that the conditions that ensure convergence within ellipsoidal regions of the tracking and estimation errors can be expressed in the form of a linear matrix inequality (LMI) formulation. The effectiveness of the developed control strategy is demonstrated by means of simulation results.  相似文献   

8.
9.
This paper addresses the robust H static output feedback (SOF) controller design problem for a class of uncertain fuzzy affine systems that are robust against both the plant parameter perturbations and controller gain variations. More specifically, the purpose is to synthesize a non-fragile piecewise affine SOF controller guaranteeing the stability of the resulting closed-loop fuzzy affine dynamic system with certainH performance index. Based on piecewise quadratic Lyapunov functions and applying some convexification procedures, two different approaches are proposed to solve the robust and non-fragile piecewise affine SOF controller synthesis problem. It is shown that the piecewise affine controller gains can be obtained by solving a set of linear matrix inequalities (LMIs). Finally, simulation examples are given to illustrate the effectiveness of the proposed methods.  相似文献   

10.
This article presents a computationally efficient way of synthesizing linear parameter‐varying (LPV) controllers. It reviews the possibility of a separate observer and state feedback synthesis with guaranteed performance and shows that a standard mixed sensitivity problem can be solved in this way. The resultant output feedback controller consists of an LPV observer, augmented with dynamic filters to incorporate integral control and roll‐off properties, and an LPV state feedback gain. It is thus highly structured, which is beneficial for implementation. Moreover, it does not depend on scheduling parameter rates regardless of whether parameter‐dependent Lyapunov matrices are used during synthesis. A representative control design for active flutter suppression on an aeroelastic unmanned aircraft demonstrates the benefits of the proposed method in comparison with state‐of‐the‐art LPV output feedback synthesis.  相似文献   

11.
A general anti‐windup (AW) compensation scheme is provided for a class of input constrained feedback‐linearizable nonlinear systems. The controller considered is an inner‐loop nonlinear dynamic inversion controller, augmented with an outer‐loop linear controller, of arbitrary structure. For open‐loop globally exponentially stable plants, it is shown that (i) there always exists a globally stabilizing AW compensator corresponding to a nonlinear generalization of the Internal‐Model‐Control (IMC) AW solution; (ii) important operator theoretic parallels exist between the AW design scheme for linear control and the suggested AW design scheme for nonlinear affine plants and (iii) a more attractive AW compensator may be obtained by using a nonlinear state‐feedback term, which plays a role similar to the linear state‐feedback term in linear coprime factor‐based AW compensation. The results are demonstrated on a dual‐tank simulation example. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
This paper investigates the design of distributed observers for agents with identical linear discrete‐time state‐space dynamics networked on a directed graph interaction topology. The digraph is assumed to have fixed topology and contain a spanning tree. Cooperative observer design guaranteeing convergence of the estimates of all agents to their actual states is proposed. The notion of convergence region for distributed observers on graphs is introduced. It is shown that the proposed cooperative observer design has a robustness property. Application of cooperative observers is made to the synchronization problem. A command trajectory generator and pinning control are employed for synchronizing all the agents to a desired trajectory. Complete knowledge about the agent's state is not assumed. A duality principle is shown for observers and state feedback for distributed discrete‐time systems on graph topologies. Three different observer/controller architectures are proposed for dynamic output feedback regulator design, and they are shown to guarantee convergence of the estimate to the true state and synchronization of all the agents' states to the command state trajectory. This provides design methods for cooperative regulators based on a separation principle. It is shown that the observer convergence region and feedback control synchronizing region for discrete‐time systems are inherently bounded, so that the conditions for observer convergence and state synchronization are stricter than the results for the continuous‐time counterparts. This is in part remedied by using weighting of different feedback coupling gains for every agent. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The output tracking controller design problem is dealt with for a class of nonlinear semi‐strict feedback systems in the presence of mismatched nonlinear uncertainties, external disturbances, and uncertain nonlinear virtual control coefficients of the subsystems. The controller is designed in a backstepping manner, and to avoid the shortcoming of ‘explosion of terms’, the dynamic surface control technique that employs a group of first‐order low‐pass filters is adopted. At each step of the virtual controller design, a robust feedback controller employing some effective nonlinear damping terms is designed to guarantee input‐to‐state practical stable property of the corresponding subsystem, so that the system states remain in the feasible domain. The virtual controller is enhanced by a finite‐time disturbance observer that estimates the disturbance term in a finite‐time. The properties of the composite control system are analyzed theoretically. Furthermore, by exploiting the cascaded structure of the control system, a simplified robust controller is proposed where only the first subsystem employs a disturbance observer. The performance of the proposed methods is confirmed by numerical examples. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
The presence of the dead‐zone nonlinearity is common in many physical systems and in general degrades the control systems performance or stability. This note considers an interconnection between a continuous time multiple‐input linear system and a dead‐zone nonlinearity associated with a state feedback. The issue of analyzing the property of uniform ultimate boundedness (UUB) of a system and the issue of designing a control under UUB constraint are studied. Firstly, the dead‐zone is replaced via a linear transformation introducing the saturation. Secondly, we improve the size of the UUB area that can be found in the literature, by expressing the saturation in terms of parametrized piecewise affine bounds. This allows also a link between standard approaches such ones using piecewise affine models or ones considering global cone bounded sector conditions. In the framework of analysis and synthesis, sufficient conditions are obtained by linear matrix inequalities. Illustrative examples are given to spotlight the efficiency of our approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
This paper is concerned with the problem of feedback passification for switched stochastic time‐delay systems with multiple disturbances subject to mode‐dependent average dwell‐time switching. The multiple disturbances are composed of two parts: one is given through an exogenous system and the other is described in the form of norm‐bounded vector. A disturbance observer is constructed to estimate an exogenous disturbance. Then, a state feedback controller that includes the estimation value is designed to guarantee the passivity of the closed‐loop system. The observer and controller gains are developed via linear matrix inequalities. The effectiveness of the proposed method is verified through a numerical example and an application example to PWM‐driven boost converter.  相似文献   

16.
This paper presents a disturbance rejection method for an affine nonlinear system. The control system is constructed based on the equivalent‐input‐disturbance (EID) approach. An affine nonlinear state observer is used to reconstruct the state of the affine nonlinear system and to estimate an EID. The well‐known differential mean value theorem enables us to describe the closed‐loop system in the state space as a linear‐parameter‐varying system. This makes it easy to derive sufficient conditions of global uniform ultimate boundedness in term of linear matrix inequalities (LMIs) by using a Lyapunov function and convexity theory. Controllers are designed based on the LMIs. A numerical example is used to illustrate the design of the control system. And a comparison between the EID‐based control and the sliding‐mode control demonstrates the effectiveness and advantages of the EID‐based control method.  相似文献   

17.
This paper investigates stability analysis for piecewise affine (PWA) systems and specifically contributes a new robust model predictive control strategy for PWA systems in the presence of constraints on the states and inputs and with l2 or norm‐bounded disturbances. The proposed controller is based on piecewise quadratic Lyapunov functions. The problem of minimization of the cost function for model predictive control design is changed to minimization of the worst case of the cost function. Then, this objective is reduced to minimization of a supremum of the cost function subject to a terminal inequality by considering the induced l2‐norm. Finally, the predictive controller design problem is turned into a linear matrix inequality feasibility exercise with constraints on the input signal and state variables. It is shown that the closed‐loop system is asymptotically stable with guaranteed robust performance. The validity of the proposed method is verified through 3 well‐known examples of PWA systems. Simulation results are provided to show good convergence properties along with capability of the proposed controller to reject disturbances.  相似文献   

18.
This paper employs a dual‐observer design to solve the problem of global output feedback stabilization for a class of nonlinear systems whose nonlinearities are bounded by both low‐order and high‐order terms. We show that the dual‐observer comprised of two individual homogeneous observers, can be implemented together to estimate low‐order and high‐order states in parallel. The proposed dual observer, together with a state feedback controller, which has both low‐order and high‐order terms, will lead to a new result combining and generalizing two recent results (Li J, Qian C. Proceedings of the 2005 IEEE Conference on Decision and Control, 2005; 2652–2657) and (Qian C. Proceedings of the 2005 American Control Conference, June 2005; 4708–4715). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
In this article, we address the problem of output stabilization for a class of nonlinear time‐delay systems. First, an observer is designed for estimating the state of nonlinear time‐delay systems by means of quasi‐one‐sided Lipschitz condition, which is less conservative than the one‐sided Lipschitz condition. Then, a state feedback controller is designed to stabilize the nonlinear systems in terms of weak quasi‐one‐sided Lipschitz condition. Furthermore, it is shown that the separation principle holds for stabilization of the systems based on the observer‐based controller. Under the quasi‐one‐sided Lipschitz condition, state observer and feedback controller can be designed separately even though the parameter (A,C) of nonlinear time‐delay systems is not detectable and parameter (A,B) is not stabilizable. Finally, a numerical example is provided to verify the efficiency of the main results.  相似文献   

20.
This paper studies the event‐triggered containment control problem for dynamical multiagent networks of general MIMO linear agents. An event‐triggered containment control strategy is provided, which consists of a control law based on a relative‐state feedback and a distributed triggering rule based on both the relative‐state information and a time‐dependent threshold function. Compared to the previous related works, our main contribution is that the triggering rule depends only on local information of communication networks. It is proved that under the proposed event‐based controller, the containment errors are uniformly ultimately bounded and the Zeno behavior can be excluded. Moreover, when the derivation constant in the threshold function is equal to zero, the containment control problem can be solved. Then, the results are extended to the event‐triggered observer‐based containment controller design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号