首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of highly ordered 2D supramolecular architectures self‐assembled at the solid–solution interfaces is subject to complex interactions between the analytes, the solvent, and the substrate. These forces have to be mastered in order to regard self‐assembly as an effective bottom‐up approach for functional‐device engineering. At such interfaces, prediction of the thermodynamics governing the formation of spatially ordered 2D arrangements is far from being fully understood, even for the physisorption of a single molecular component on the basal plane of a flat surface. Two recent contributions on controlled polymorphism and nanopattern formation render it possible to gain semi‐quantitative insight into the thermodynamics of physisorption at interfaces, paving the way towards 2D supramolecular crystal engineering. Although in these two works different systems have been chosen to tackle such a complex task, authors showed that the chemical design of molecular building blocks is not the only requirement to fulfill when trying to preprogram self‐assembled patterns at the solid–liquid interface.  相似文献   

2.
3.
Due to its amphiphilic property, graphene oxide (GO) can achieve a variety of nanostructures with different morphologies (for example membranes, hydrogel, crumpled particles, hollow spheres, sack‐cargo particles, Pickering emulsions, and so on) by self‐assembly. The self‐assembly is mostly derived from the self‐concentration of GO sheets at various interfaces, including liquid‐air, liquid‐liquid and liquid‐solid interfaces. This paper gives a comprehensive review of these assembly phenomena of GO at the three types of interfaces, the derived interfacial self‐assembly techniques, and the as‐obtained assembled materials and their properties. The interfacial self‐assembly of GO, enabled by its fantastic features including the amphiphilicity, the negatively charged nature, abundant oxygen‐containing groups and two‐dimensional flexibility, is highlighted as an easy and well‐controlled strategy for the design and preparation of functionalized carbon materials, and the use of self‐assembly for uniform hybridization is addressed for preparing hybrid carbon materials with various functions. A number of new exciting and potential applications are also presented for the assembled GO‐based materials. This contribution concludes with some personal perspectives on future challenges before interfacial self‐assembly may become a major strategy for the application‐targeted design and preparation of functionalized carbon materials.  相似文献   

4.
5.
6.
DNA is a superb molecule for self‐assembly of nanostructures. Often many DNA strands are required for the assembly of one DNA nanostructure. For lowering the cost of synthesizing DNA strands and facilitating the assembly process, it is highly desirable to use a minimal number of unique strands for potential technological applications. Herein, a strategy is reported to assemble a series of DNA microparticles (DNAµPs) from one component DNA strand. As a demonstration of the application of the resulting DNAµPs, the design and assembled DNAµPs are modified to carry additional single‐stranded tails on their surfaces. The modified DNAµPs can either capture other nucleic acids or display CpG motifs to stimulate immune responses.  相似文献   

7.
8.
9.
Cell nanoencapsulation provides a chemical tool for the isolation and protection of living cells from harmful, and often lethal, external environments. Although several strategies are available to form nanometric films, most methods heavily rely on time‐consuming multistep processes and are not biocompatible. Here, the interfacial supramolecular self‐assembly and film formation of ferric ions (FeIII) and tannic acid (TA) in biphasic systems is reported, where FeIII and TA come into contact each other and self‐assemble across the interface of two immiscible phases. The interfacial nanofilm formation developed is simple, fast, and cytocompatible. Its versatility is demonstrated with various biphasic systems: hollow microcapsules, encasing microbial or mammalian cells, that are generated at the water–oil interface in a microfluidic device; a cytoprotective FeIII–TA shell that forms on the surface of the alginate microbead, which then entraps probiotic Lactobacillus acidophilus; and a pericellular FeIII–TA shell that forms on individual Saccharomyces cerevisiae. This biphasic interfacial reaction system provides a simple but versatile structural motif in materials science, as well as advancing chemical manipulability of living cells.  相似文献   

10.
The technique of ionic self‐assembly, i.e., the coupling of structurally different building blocks by electrostatic interactions, a powerful tool to create new material nanostructures and chemical objects, is reviewed. The excellent availability of the starting products (charged tectonic units) and the simplicity of synthesis, by neat addition and cooperative stoichiometric precipitation with high purity, allow the recombinatorial synthesis of a whole range of functional materials and hybrids with interesting and versatile functions. Diverse combinations between polyelectrolytes, surfactants, clusters, and extended rigid organic scaffolds are discussed in detail, and the underlying principles of nanostructure formation are illustrated.  相似文献   

11.
As our nation's need for engineering professionals grows, educators and industry leaders are increasingly becoming concerned with how to attract women to this traditionally male career path. Self‐efficacy has been shown to be related to positive outcomes in studying and pursuing careers in non‐traditional fields. This paper describes the results of two years of engineering self‐efficacy data collected from women engineering students at five institutions across the U.S. This study adds to the growing body of self‐efficacy literature via its multi‐year, multi‐institution design and helps to clarify the impact of the engineering curriculum on self‐efficacy. Results indicate that while women students show positive progress on some self‐efficacy and related subscales, they show a significant decrease on feelings of inclusion from the first to second measurement period and further suggest a relationship between ethnicity and feelings of inclusion. Additionally, correlations show that self‐efficacy is related to women students' plans to persist in this predominantly male discipline.  相似文献   

12.
13.
14.
Self‐assembled functional nanoarchitectures are employed as important nanoscale building blocks for advanced materials and smart miniature devices to fulfill the increasing needs of high materials usage efficiency, low energy consumption, and high‐performance devices. One‐dimensional (1D) crystalline nanostructures, especially molecule‐composed crystalline nanostructures, attract significant attention due to their fascinating infusion structure and functionality which enables the easy tailoring of organic molecules with excellent carrier mobility and crystal stability. In this review, we discuss the recent progress of 1D crystalline self‐assembled nanostructures of functional molecules, which include both a small molecule‐derived and a polymer‐based crystalline nanostructure. The basic principles of the molecular structure design and the process engineering of 1D crystalline nanostructures are also discussed. The molecular building blocks, self‐assembly structures, and their applications in optical, electrical, and photoelectrical devices are overviewed and we give a brief outlook on crucial issues that need to be addressed in future research endeavors.  相似文献   

15.
16.
17.
Amphiphilicity is one of the molecular bases for self‐assembly. By tuning the amphiphilicity of building blocks, controllable self‐assembly can be realized. This article reviews different routes for tuning amphiphilicity and discusses different possibilities for self‐assembly and disassembly in a controlled manner. In general, this includes irreversible and reversible routes. The irreversible routes concern irreversible reactions taking place on the building blocks and changing their molecular amphiphilicity. The building blocks are then able to self‐assemble to form different supramolecular structures, but cannot remain stable upon loss of amphiphilicity. Compared to the irreversible routes, the reversible routes are more attractive due to the good control over the assembly and disassembly of the supramolecular structure formed via tuning of the amphiphilicity. These routes involve reversible chemical reactions and supramolecular approaches, and different external stimuli can be used to trigger reversible changes of amphiphilicity, including light, redox, pH, and enzymes. It is anticipated that this line of research can lead to the fabrication of new functional supramolecular assemblies and materials.  相似文献   

18.
Nanoscience and nanotechnology offer great opportunities and challenges in both fundamental research and practical applications, which require precise control of building blocks with micro/nanoscale resolution in both individual and mass‐production ways. The recent and intensive nanotechnology development gives birth to a new focus on nanomembrane materials, which are defined as structures with thickness limited to about one to several hundred nanometers and with much larger (typically at least two orders of magnitude larger, or even macroscopic scale) lateral dimensions. Nanomembranes can be readily processed in an accurate manner and integrated into functional devices and systems. In this Review, a nanotechnology perspective of nanomembranes is provided, with examples of science and applications in semiconductor, metal, insulator, polymer, and composite materials. Assisted assembly of nanomembranes leads to wrinkled/buckled geometries for flexible electronics and stacked structures for applications in photonics and thermoelectrics. Inspired by kirigami/origami, self‐assembled 3D structures are constructed via strain engineering. Many advanced materials have begun to be explored in the format of nanomembranes and extend to biomimetic and 2D materials for various applications. Nanomembranes, as a new type of nanomaterials, allow nanotechnology in a controllable and precise way for practical applications and promise great potential for future nanorelated products.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号