共查询到20条相似文献,搜索用时 15 毫秒
1.
S. L. Sun X. Y. Xu Z. Y. Tan C. Zhou Y. H. Ao M. Y. Zhang H. X. Zhang 《应用聚合物科学杂志》2006,102(6):5363-5371
The performance of acrylonitrile–butadiene–styrene (ABS) core–shell modifier with different grafting degree, acrylonitrile (AN) content, and core–shell ratio in toughening of poly(butylene terephthalate) (PBT) matrix was investigated. Results show PBT/ABS blends fracture in ductile mode when the grafting degree is high, and with the decrease of grafting degree PBT/ABS blends fracture in a brittle way. The surface of rubber particles cannot be covered perfectly for ABS with low grafting degree and agglomeration will take place; on the other hand, the entanglement density between SAN and PBT matrix decreases because of the low grafting degree, inducing poor interfacial adhesion. The compatibility between PBT and ABS results from the strong interaction between PBT and SAN copolymer and the interaction is influenced by AN content. Results show ABS cannot disperse in PBT matrix uniformly when AN content is zero and PBT/ABS fractures in a brittle way. With the addition of AN in ABS, PBT/ABS blends fracture in ductile mode. The core–shell ratio of ABS copolymers has important effect on PBT/ABS blends. When the core–shell ratio is higher than 60/40 or lower than 50/50, agglomeration or cocontinuous structure occurs and PBT/ABS blends display lower impact strength. © 2006 Wiley Periodicals, Inc. J Appl PolymSci 102: 5363–5371, 2006 相似文献
2.
Different types of acrylic core–shell rubber particles with a poly(butyl acrylate) (PBA) core and a grafted poly(methyl methacrylate) (PMMA) shell were synthesized. The average size of acrylic core–shell latex particles ranged from 100 to 170 nm in diameter, having the core gel content in the range of 35–80%. The melt blending behavior of the poly(vinyl chloride) (PVC) and the acrylic core–shell rubber materials having different average particle sizes and gel contents was investigated in a batch mixing process. Although the torque curves showed that the particulate flow of the PVC in the blends was dominant, some differences were observed when the size and gel content of the particles varied. This behavior can be attributed to differences in the plasticizing effect and dispersion state of various types of core–shell rubber particles, which can vary the gelatin process of the PVC in the mixing tool. On the other hand, the highest toughening efficiency was obtained using core–shell rubber particles with the smallest particle size (i.e., 100 nm). The results showed that increasing the gel content of the core–shell impact modifiers with the same particle size improved the particle dispersion state in the PVC matrix. The toughening efficiency decreased for the blends containing 100 and 170 nm rubber particles as the gel content increased. Nevertheless, unexpected behavior was observed for the blends containing 140 nm rubber particles. It was found that a high level of toughness could be achieved if the acrylic core–shell rubber particles as small as 100 nm had a lower gel content. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
3.
A macroazoinitiator (MAI) containing a poly(ethylene oxide) (PEO) block was used with a methyl methacrylate monomer to prepare polymer particles in ethanol/H2O solutions. The effects of the monomer/MAI ratio (RMI) and H2O content in the solutions on the molecular weight, particle diameters, and chemical structure of the resulting polymer particles were investigated. The reaction mixtures showed three kinds of states, which were milky colloid solutions, macrogels and/or precipitations, and clear solutions. The colloid solutions were obtained in the solutions with an H2O content of about 50–90 vol % and a RMI of 20–400. In the colloid solutions, core–shell nanospheres consisting of PEO shells and poly(methyl methacrylate) (PMMA) cores were predominantly obtained. In the specific conditions close to the area of gel and/or precipitation formation, particles connected about 0.5–5 μm in length were obtained. Multiblock copolymers nanospheres tended to be obtained with lower RMIs, and PMMA‐PEO‐PMMA tri‐bloc and/or PMMA‐PEO di‐block copolymer nanospheres were obtained with higher RMIs. The solubility of the monomer and the generated polymer in solutions may have affected the polymerization development and the state of the products. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
4.
A study of hygrothermal aging in terms of the kinetics of moisture absorption by poly(butylene terephthalate) (PBT) and styrene‐acrylonitrile/acrylate based core–shell rubber (CSR) toughened PBT (PBT‐CSR) was undertaken. The diffusion of water into the PBT compounds with various CSR contents was investigated by immersion of specimens in water at temperatures between 30 and 90°C. It was observed that the equilibrium moisture content and the diffusion coefficient of the PBT both increased with increasing CSR content. The fracture behaviors of the PBT and PBT‐CSR were investigated. The focus of investigation was on the effect of an internal parameter (rubber content) and external parameters (testing temperature, deformation rates, and hygrothermal aging) on the fracture behavior of these materials. The fracture response of the various materials was evaluated by the fracture toughness and energy measured on static‐loaded compact tension specimens. The tensile and fracture behavior of PBT and PBT‐CSR was affected by both the internal and external parameters. On its own the CSR impact modifier failed to improve the toughness of PBT at either high testing speed or subambient temperature (−40°C). Based on the dynamic mechanical analysis study, the CSR is believed to behave as a rigid particulate filler in the PBT that consequently reduces the ductility of the PBT. All the materials tested showed poor retention of the tensile and fracture properties upon exposure to hygrothermal aging at 90°C, and these properties could not be restored by subsequent drying. This was attributed to severe hydrolytic degradation of the PBT that caused permanent damage to the materials. The failure modes of PBT and PBT‐CSR were assessed by fractographic studies in a scanning electron microscope. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2470–2481, 1999 相似文献
5.
Flame retardancy for thermoplastics is a challenging task where chemists and engineers work together to find solutions to improve the burning behavior without strongly influencing other key properties of the material. In this work, the halogen‐free additives aluminum diethylphosphinate (AlPi‐Et) and a mixture of aluminum phosphinate (AlPi) and resorcinol‐bis(di‐2,6‐xylyl phosphate) (AlPi‐H + RXP) are employed in neat and reinforced poly(butylene terephthalate) (PBT), and the morphology, mechanical performance, rheological behavior, and flammability of these materials are compared. Both additives show submicron dimensions but differ in terms of particle and agglomerate sizes und shapes. The overall mechanical performance of the PBT flame‐retarded with AlPi‐Et is lower than that with AlPi‐H‐RXP, due to the presence of larger agglomerates. Moreover, the flow behavior of the AlPi‐Et/PBT materials is dramatically changed as the larger rod‐like primary particles build a percolation threshold. In terms of flammability, both additives perform similar in the UL 94 test and under forced‐flaming combustion. Nevertheless, AlPi‐Et performs better than AlPi‐H + RXP in the LOI test. The concentration required to achieve acceptable flame retardancy ranges above 15 wt %. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
6.
Glycidyl methacrylate functionalized acrylonitrile–butadiene–styrene (ABS‐g‐GMA) particles were prepared and used to toughen polylactide (PLA). The characteristic absorption at 1728 cm?1 of the Fourier transform infrared spectra indicated that glycidyl methacrylate (GMA) was grafted onto the polybutadiene phase of acrylonitrile–butadiene–styrene (ABS). Chemical reactions analysis indicated that compatibilization and crosslinking reactions took place simultaneously between the epoxy groups of ABS‐g‐GMA and the end carboxyl or hydroxyl groups of PLA and that the increase of GMA content improved the reaction degree. Scanning electron microscopy results showed that 1 wt % GMA was sufficient to satisfy the compatibilization and that ABS‐g‐GMA particles with 1 wt % GMA dispersed in PLA uniformly. A further increase of GMA content induced the agglomeration of ABS‐g‐GMA particles because of crosslinking reactions. Dynamic mechanical analysis testing showed that the miscibility between PLA and ABS improved with the introduction of GMA onto ABS particles because of compatibilization reactions. The storage modulus decreased for the PLA blends with increasing GMA content. The decrease in the storage modulus was due to the chemical reactions in the PLA/ABS‐g‐GMA blends, which improved the viscosity and decreased the crystallization of PLA. A notched impact strength of 540 J/m was achieved for the PLA/ABS‐g‐GMA blend with 1 wt % GMA, which was 27 times than the impact strength of pure PLA, and a further increase in the GMA content in the ABS‐g‐GMA particles was not beneficial to the toughness improvement. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
7.
Interfacially initiated microemulsion copolymerizations of n‐butyl methacrylate (BMA) and N‐vinyl pyrrolidone (NVP) by the redox initiation couple of benzoyl peroxide and ferrous sulfate were carried out with Tween 80 and n‐butanol as the surfactant and cosurfactant, respectively. Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy were recorded to analyze the chemical composition of the latex particles. Transmission electron microscopy was used to observe the particle morphology and dynamic light scattering to determine the particle size. The results demonstrated that interfacially initiated microemulsion polymerization prompted the copolymerization of the water‐soluble NVP monomer with the oil‐soluble BMA monomer to form core–shell nanoparticles. The influence of the surfactant concentration, BMA amount, and temperature on the particle size and polymerization rate was investigated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3751–3757, 2006 相似文献
8.
Conductive polymer particles, polyaniline (PANI)‐coated poly(methyl methacrylate–butyl acrylate–acrylic acid) [P(MMA–BA–AA)] nanoparticles, were prepared. The P(MMA–BA–AA)/PANI core–shell complex particles were synthesized with a two‐step miniemulsion polymerization method with P(MMA–BA–AA) as the core and PANI as the shell. The first step was to prepare the P(MMA–BA–AA) latex particles as the core via miniemulsion polymerization and then to prepare the P(MMA–BA–AA)/PANI core–shell particles. The aniline monomer was added to the mixture of water and core nanoparticles. The aniline monomer could be attracted near the outer surface of the core particles. The polymerization of aniline was started under the action of ammonium persulfate (APS). The final product was the desired core–shell nanoparticles. The morphology of the P(MMA–BA–AA) and P(MMA–BA–AA)/PANI particles was characterized with transmission electron microscopy. The core–shell structure of the P(MMA–BA–AA)/PANI composites was further determined by Fourier transform spectroscopy and ultraviolet–visible measurements. The conductive flakes made from the core–shell latexes were prepared, and the electrical conductivities of the flakes were studied. The highest conductivity of the P(MMA–BA–AA)/PANI pellets was 2.05 S/cm. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
9.
Core–shell poly(butadiene‐graft‐styrene) (PB‐g‐PS) rubber particles were synthesized with different initiation systems by emulsion grafting polymerization. These initiation systems included the redox initiators and an oil‐soluble initiator, 1,2‐azobisisobutyronitrile (AIBN). Then the PB‐g‐PS impact modifiers were blended with polystyrene (PS) to prepare the PS/PB‐g‐PS blends. In the condition of the same tensile yield strength on both samples, the Izod test showed that the notched impact strength of PS/PB‐g‐PS(AIBN) was 237.8 J/m, almost 7 times than that of the PS/PB‐g‐PS(redox) blend, 37.2 J/m. From transmission electron microscope (TEM) photographs, using the redox initiators, some microphase PS zones existed in the core of PB rubber particles, which is called “internal‐grafting.” This grafting way was inefficient on toughening. However, using AIBN as initiator, a great scale of PS subinclusion was seen within the PB particle core, and this microstructure increased the effective volume fraction of the rubber phase with a result of improving the toughness of modified polystyrene. The dynamic mechanical analysis (DMA) on both samples showed that the glass transition temperature (Tg) of rubber phase of PS/PB‐g‐PS(AIBN) was lower than that of PS/PB‐g‐PS(redox). As a result, the PB‐g‐PS(AIBN) had better toughening efficiency on modified polystyrene than the PB‐g‐PS(redox), which accorded with the Kerner approximate equation. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 738–744, 2007 相似文献
10.
Acrylonitrile–butadiene rubber functionalization for the toughening modification of recycled poly(ethylene terephthalate) 下载免费PDF全文
The incorporation of functionalized acrylonitrile–butadiene rubber (NBR) into recycled poly(ethylene terephthalate) (PET) was introduced as an effective route for modifying the properties of PET and as a new method for PET recycling as well. To achieve modified NBR, glycidyl methacrylate (GMA) was grafted onto NBR with optimized reactive mixing, in which the highest grafting degree and lowest gel content were generated. PET/NBR blends with and without GMA functionalization were produced by melt mixing, and the mechanical properties, dynamic mechanical thermal properties, and phase morphologies of the systems were determined and compared. We found that low amounts of peroxide initiator (dicumyl peroxide) and high levels of the GMA monomer in the presence of the styrene comonomer led to the maximum grafting degree and suppressed the competing rubber crosslinking and GMA homopolymerization reactions. The blend compatibility with PET determined from dynamic mechanical thermal analysis spectra and scanning electron microscopy images was greatly improved when the NBR‐grafted GMA was used instead of the neat NBR in the blend recipes. As a result, the rubber phase dispersed in the PET matrix more finely, and the impact strength of the blend advanced very significantly. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40483. 相似文献
11.
A two-stage, multistep soapless emulsion polymerization was employed to prepare various sizes of reactive core–shell particles (CSPs) with butyl acrylate (BA) as the core and methyl methacrylate (MMA) copolymerizing with various concentrations of glycidyl methacrylate (GMA) as the shell. Ethylene glycol dimethacrylate (EGDMA) was used to crosslink either the core or shell. The number of epoxy groups in a particle of the prepared CSP measured by chemical titration was close to the calculated value based on the assumption that the added GMA participated in the entire polymerization unless it was higher than 29 mol %. Similar results were also found for their solid-state 13C-NMR spectroscopy. The MMA/GMA copolymerized and EGDMA-crosslinked shell of the CSP had a maximum glass transition temperature (Tg) of 140°C, which was decreased with the content of GMA at a rate of −1°C/mol %. However, the shell without crosslinking had a maximum Tg of 127°C, which decreased at a rate of −0.83°C/mol %. The Tg of the interphasial region between the core and shell was 65°C, which was invariant with the design variables. The Tg of the BA core was −43°C, but it could be increased to −35°C by crosslinking with EGDMA. The Tg values of the core and shell were also invariant with the size of the CSP. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2069–2078, 1998 相似文献
12.
A core–shell nanosilica (nano‐SiO2)/fluorinated acrylic copolymer latex, where nano‐SiO2 served as the core and a copolymer of butyl acrylate, methyl methacrylate, and 2,2,2‐trifluoroethyl methacrylate (TFEMA) served as the shell, was synthesized in this study by seed emulsion polymerization. The compatibility between the core and shell was enhanced by the introduction of vinyl trimethoxysilane on the surface of nano‐SiO2. The morphology and particle size of the nano‐SiO2/poly(methyl methacrylate–butyl acrylate–2,2,2‐trifluoroethyl methacrylate) [P(MMA–BA–TFEMA)] core–shell latex were characterized by transmission electron microscopy. The properties and surface energy of films formed by the nano‐SiO2/P(MMA–BA–TFEMA) latex were analyzed by Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy/energy‐dispersive X‐ray spectroscopy, and static contact angle measurement. The analyzed results indicate that the nano‐SiO2/P(MMA–BA–TFEMA) latex presented uniform spherical core–shell particles about 45 nm in diameter. Favorable characteristics in the latex film and the lowest surface energy were obtained with 30 wt % TFEMA; this was due to the optimal migration of fluorine to the surface during film formation. The mechanical properties of the films were significantly improved by 1.0–1.5 wt % modified nano‐SiO2. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
13.
Zhengmin Li Jinghe Yang Yuanzhang Yu Xingzhong Xu Xiantan Meng Weijun Yu Xiuling Xu Lei Li Xiuying Yue 《应用聚合物科学杂志》2003,89(3):855-861
To describe the morphology of the core–shell latex particle of methyl methacrylate–butadiene–styrene graft copolymer (MBS) quantitatively, we propose four parameters, that is, the diameter of the core, the shell thickness (TH), the roundness of the core, and the eccentricity (E); we calculated these parameters with geometrical parameters determined by the analysis of transmission electron microscope images. The mean values and distributions of the four parameters based on a certain amount of particles were used for quantitative characterization of MBS latex samples. With increasing monomer‐to‐polymer ratios of the graft polymerization, both the MBS TH and the numbers of homopolymer particles increased, and the core–shell morphology tended to be irregular. For the MBS latices derived from poly(styrene–butadiene) latex with a wide distribution of particle sizes, the core–shell structures of the larger particles were different from those of smaller ones to a certain extent, and both the TH and the E decreased with increasing core size. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 855–861, 2003 相似文献
14.
Chao Zhou Xiaoxue Qi Yun Xia Gao Shulin Sun Huixuan Zhang 《Polymer International》2012,61(7):1067-1072
Methyl methacrylate–butadiene–styrene (MBS) core–shell particles were prepared by grafting styrene and methyl methacrylate onto polybutadiene seeds via emulsion polymerization. All the MBS particles were designed with the same chemical composition, similar grafting degree but different internal structures. The difference in internal structure was realized by controlling the ratio of ‘external grafting’ and ‘internal grafting’ of styrene. The work focused on the influence of the internal structure of MBS core–shell particles on the properties of poly(vinyl chloride)/MBS blends. From transmission electron microscopy, three different internal structures were observed: rare sub‐inclusions, a large number of small sub‐inclusions and large sub‐inclusions. The results of dynamic mechanical analysis illustrated that the different internal structures greatly affected the glass transition temperature Tg of the rubber phase and the storage modulus of the core–shell particles. The notched Izod impact test results showed that the MBS with large sub‐inclusions had the lowest brittle–ductile transition temperature, while the transparency test revealed that the presence of sub‐inclusions in the rubbery phase reduced the transparency of the blend. Copyright © 2012 Society of Chemical Industry 相似文献
15.
High solids content poly(butyl acrylate)/poly(methyl methacrylate) core–shell latex particles were produced using miniemulsion polymerisation in a continuous linear tubular reactor. The resulting products were and shown to be comparable to a batch process. Final solids contents of 41 and 48 wt.% were shown to be possible in a simple tubular reactor. Differential scanning calorimeter analysis indicated that core–shell particles were formed under these conditions. © 2011 Canadian Society for Chemical Engineering 相似文献
16.
The structure and properties of binary blends composed of poly(lactic acid) (PLA) and fibrous poly(butylene succinate) (PBS), which were prepared by an uniaxial stretching operation in the molten state, were studied and compared with those of blends having spherical particles of PBS in a continuous PLA phase. We found from electron microscope observation that PBS nanofibers with a large aspect ratio were generated in the stretched samples. Enlargement of the surface area of the PBS particles, which showed nucleating ability for PLA, led to a high degree of crystallization and enhanced the cold crystallization in the heating process. Moreover, the PBS fibers in the stretched samples had a dominant effect on the mechanical properties in the point range between the glass‐transition temperature of PLA and the melting temperature of PBS. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
17.
This study attempted to correlate morphological changes and physical properties for a high rubber content acrylonitrile–butadiene–styrene (ABS) and its diluted blends with a poly(styrene‐co‐acrylonitrile) (SAN) copolymer. The results showed a close relationship between rubber content and fracture toughness for the blends. The change of morphology in ABS/SAN blends explains in part some deviations in fracture behavior observed in ductile–brittle transition temperature shifts. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2606–2611, 2004 相似文献
18.
We report on the process–structure–property relationships for Poly(lactic acid) (PLA) filaments produced through the spunbond process. The influence of spinning speed, polymer throughput, and draw ratio on crystallinity and birefringence of fibers were evaluated. We established that increasing spinning speed increases crystallinity and birefringence of fibers. We also investigate the role of fiber structures on fiber tensile properties—breaking tensile strength, strain at break, initial modulus, and natural draw ratio. An increase in spinning speed leads to a higher breaking tensile strength, higher initial modulus and lower strain at break. We have shown an almost linear relationship between breaking tensile strength of PLA fibers and birefringence. This indicates that improved tensile properties at high spinning speeds can be attributed to enhanced molecular orientation. The dependency of fiber breaking tensile strength and strain at break on spun orientation were explained with natural draw ratio, as a measure of spun orientation. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44225. 相似文献
19.
Silicone rubber particles with core–shell structure were prepared by polymerization of vinyl monomers in the presence of linear or cross-linked poly(dimethyl siloxane–methyl vinyl siloxane) latexes. The monomers were added in either continuous or swelled-continuous modes. Core–shell particles with poly(butyl methacrylate), or poly(methyl methacrylate), as the shell were obtained by using either addition mode. The core–shell structure was not observed for polysiloxane–polystyrene particles. The influence of monomer addition mode, the compatibilities of the monomers and their homopolymers with silicone rubber, and the reactivity ratios of the vinyl monomers with the vinyl group of linear polysiloxane particles, on the formation of the core-shell structure is discussed. 相似文献
20.
Poly(urethane acrylate) (PUA)/poly(methylmethacrylate) (PMMA) core–shell composite particles were prepared by two-stage emulsion polymerization. The sizes of composite particles could be varied from 25 to 210 nm by introducing polyoxyethylene (POE) groups to the urethane acrylate molecular backbone. Core–shell morphology was identified by investigating the polarity of the surface of the core and shell polymer particles and by measuring the contact angle of the composite particles. A composite particle prepared with relatively small particles (about 20 nm) did not show the core/shell morphology, because the high polar surface of the core polymer particle and the low-stage ratio of the core to the shell cause the formation of a core/shell two-stage latex to be more thermodynamically unstable. The fracture toughness of rubber-toughened PMMA containing PUA/PMMA composite particles increased as the particle sizes decreased and the shell thickness of the composite particles increased. In particular, when the average size of the composite particle was about 43 nm and the stage ratio was 50/50, the fracture toughness of the rubber-toughened PMMA increased more than three times compared with that of pure PMMA. Furthermore, the transparency of toughened PMMA could be maintained up to 91% in the visible spectra range. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2291–2302, 1998 相似文献