首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of composite polymer nanoparticles was prepared from poly(N‐vinylcarbazole) (PVK) and poly(2,5‐bistriethoxy‐p‐phenylene vinylene‐alt‐phenylene vinylene) (BTEO–PPV‐alt‐PPV). The nanoparticle sizes were measured to be in the range of 50–80 nm with transmission electron microscopy. The photoluminescence intensity of PVK decreased with the content of BTEO–PPV‐alt‐PPV increasing in the composite polymer nanoparticles because the excited states in PVK were quenched by BTEO–PPV‐alt‐PPV. The emission from BTEO–PPV‐alt‐PPV was enhanced in the composite polymer nanoparticles because of energy transfer from PVK to BTEO–PPV‐alt‐PPV for excitation at the absorption maximum of PVK. The energy‐transfer efficiency was markedly improved in the composite polymer nanoparticles versus the composite polymer films according to emission spectral analyses. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
Poly(N-vinyl-carbazole) (PVK) thin films doped with bromine has been studied by scanning electron microscopy, X-ray diffraction, infrared absorption, X-ray photoelectron spectroscopy (XPS), electron spin resonance (ESR), optical transmission (visible, near ultra violet) and conductivity measurements. The polymer has been doped at room temperature and at 373 K. It is shown by ESR, XPS and optical measurements that a charge transfer complex (CT-complex) is formed between PVK and Br. However, if some bromine acts as dopant of the polymer there is another bromine contribution, which corresponds to bromine covalently bonded to PVK and some only adsorbed. It is also shown by ESR that there is not only polymer doping by bromine but also some partial polymer degradation. Therefore, it can be said that the optimum doping condition of PVK thin films with bromine has been shown to be room temperature post-doping.  相似文献   

3.
The main aim of this study is to investigate the effect of silver‐doped zinc oxide (Ag‐ZnO) loading on the structural, morphological, thermal and electrical properties, and gas sensing behavior of polypyrrole (PPy)/phenothiazine (PTZ)‐blend nanocomposites. The composites are characterized by FTIR, XRD, SEM, TEM, DSC, TGA, and impedance studies. FTIR spectra exhibit the presence of Ag‐ZnO in the PPy/PTZ blend. XRD analysis shows that the semicrystalline behavior of the polymer blend is greatly enhanced by the addition of Ag‐doped ZnO particles. Uniform dispersion of nanoparticles in the polymer is obtained from SEM analysis. The TEM images confirm the presence of spherically shaped nanoparticles in PPy/PTZ blend with a size of 10–25 nm. The DSC measurement indicates that the glass transition temperature of PPy/PTZ blend was significantly improved in the presence of Ag‐doped ZnO nanoparticles. The thermal decomposition temperature of nanocomposite obtained from TGA shows an increase with increase in the content of Ag‐ZnO particles. The incorporation of Ag‐doped ZnO nanoparticles to PPy/PTZ blend exhibit increase in the AC conductivity and dielectric properties of the nanocomposite, due to the pilling of charges at the extended interface of the composite system. The DC conductivity of the nanocomposite increases with the loading of nanoparticles. The ammonia gas sensing performance of PPy/PTZ/Ag‐ZnO nanocomposite is analyzed, and the result shows that the fabricated blend composite can be used as a promising candidate for the easy access of gas molecules. J. VINYL ADDIT. TECHNOL., 26:187–195, 2020. © 2019 The Authors. Journal of Vinyl and Additive Technology published by Wiley Periodicals, Inc. on behalf of Society of Plastics Engineers.  相似文献   

4.
The one‐pot synthesis of nanocomposites of a conductive poly(N‐vinylcarbazole) (PVK) with CdS, Ag, Pd50–Ag50, and Pt50–Ru50 nanoparticles was performed with γ irradiation in a tetrahydrofuran–water mixture (3/1 vol %). For comparison, the CdS, Ag, Pd50–Ag50, and Pt50–Ru50 nanoparticles were also prepared with γ irradiation with polyvinylpyrrolidone as a stabilizer. Ultraviolet–visible spectroscopy, transmission electron microscopy, X‐ray diffraction analysis, and photoluminescence spectroscopy were used for the characterization of CdS, Ag, Pd50–Ag50, and Pt50–Ru50 nanoparticles and nanocomposites of PVK with CdS, Ag, Pd50–Ag50, and Pt50–Ru50 nanoparticles. The absorption spectrum of the CdS‐nanoparticle‐based composite revealed a quantum confinement effect. The emission spectrum of the composite with CdS nanoparticles and PVK indicated the block effect of PVK for surface recombination. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1809–1815, 2006  相似文献   

5.
Waxberry‐like poly(acrylonitrile‐co‐vinyl acetate)/Ag composite microspheres have been prepared simply and directly via a one‐step self‐assembly approach. The morphology, formation, and catalytic activity of the as‐prepared composite microspheres are further investigated. The difference in the solubility among different segments of poly(acrylonitrile‐co‐vinyl acetate) is the basis of the formation of poly(acrylonitrile‐co‐vinyl acetate) microspheres, while the ? CN groups on the surface of poly(acrylonitrile‐co‐vinyl acetate) microspheres play an important role in the growth process from poly(acrylonitrile‐co‐vinyl acetate) microsphere to poly(acrylonitrile‐co‐vinyl acetate)/Ag composite microsphere. It is found that bulk quantities of composite microspheres with high density of Ag nanoparticles on the surface can be obtained readily by controlling the concentration of AgNO3. The as‐prepared composite microsphere exhibits excellent catalytic activity on reduction of p‐nitrophenol. This study may shed some light on the self‐assembly of other metal/polymer composite microspheres. POLYM. ENG. SCI., 50:1767–1772, 2010. © 2010 Society of Plastics Engineers  相似文献   

6.
An amphiphilic diblock copolymer consisting of methyl methacrylate and methacrylic acid was synthesized using atom transfer radical polymerization via a hydrolysis process design. Silver nanoparticles were synthesized by a reverse micelle method using the synthesized diblock copolymer as a surfactant. Silver nanoparticle‐embedded fibers were then fabricated using an anodic aluminum oxide template. Silver nanoparticle‐embedded porous polymer fibers were fabricated by adding unreactive diphenyl sulfide in polymer matrix. They are expected to be applied to recyclable metal catalyst systems. After sintering of silver nanoparticle‐embedded polymer fibers at a relatively lower temperature, silver nanowires were fabricated. Moreover, the surfactant effect on both self assembly of nanoparticle clusters and silver nanowires surface smoothness were compared with the previously reported results. Silver nanoparticles coordinated amphiphilic copolymer was found to reveal higher thermal resistance. POLYM. COMPOS., 31:1352–1359, 2010. © 2009 Society of Plastics Engineers  相似文献   

7.
A composite of poly(N‐vinylcarbazole) (PVK) containing gold nanoparticles (GNPs) was synthesized via simple solid‐state in situ bulk polymerization of N‐vinylcarbazole in the presence of GNPs at a high temperature. Both PVK and PVK–GNP composites were characterized by Fourier transform infrared (FTIR) and UV–vis spectroscopy. The surface morphology of the composites was studied by scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy, and transmission electron microscopy (TEM). Thermal stability was identified via thermogravimetric analysis. The composites were fabricated into films using the Langmuir–Schaefer process. The enhancement in the characteristics of room temperature I–V, pressure–area isotherms, and photoelectrochemical behaviors was observed in the composite films. Results suggest that a charge transfer process occurs across the hybrid at the interface of the PVK–GNP composites. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

8.
In this study, polysulfone (PSf)/silver‐doped carbon nanotube (Ag‐CNT) nanocomposite membranes were prepared by a phase‐inversion technique; they were characterized and evaluated for fouling‐resistant applications with bovine serum albumin (BSA) solutions. Carbon nanotubes were doped with silver nanoparticles via a wet‐impregnation technique. The prepared Ag‐CNT nanotubes were characterized with scanning electron microscopy (SEM)/energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, Raman spectroscopy, and thermogravimetric analysis. The fabricated flat‐sheet PSf/Ag‐CNT nanocomposite membranes with different Ag‐CNT loadings were examined for their surface morphology, roughness, hydrophilicity, and mechanical strength with SEM, atomic force microscopy, contact angle measurement, and tensile testing, respectively. The prepared composite membranes displayed a greater rejection of BSA solution (≥90%) and water flux stability during membrane compaction with a 10% reduction in water flux values (up to 0.4% Ag‐CNTs) than the pristine PSf membrane. The PSf nanocomposite membrane with a 0.2% Ag‐CNT loading possessed the highest flux recovery of about 80% and the lowest total membrane resistance of 56% with a reduced irreversible fouling resistance of 21%. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44688.  相似文献   

9.
We present the different elaboration steps of a composite formed of carbon nanotubes (CNT) carpet embedded in an epoxy polymer. Detailed characterization at each step of the elaboration process is performed. The good alignment of CNT in as‐grown carpets is kept all along the elaboration process of the composite, as it is measured at both macro and microscopic scales by X‐ray scattering. We also ensured by X‐ray fluorescence measurements that the iron‐based catalyst particles used for the synthesis were removed from the carpet after a high temperature post‐annealing treatment. These measurements give valuable information for further applications involving unidirectional nanotube composites and membranes, where CNT alignment is a key parameter. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39730.  相似文献   

10.
Noncovalent chemical modification by initiated chemical vapor deposition technique is applied to carbon nanotubes (CNTs) to reduce average agglomerate size of the nanoparticles in the polymer matrix and to improve surface interaction between the composite constituents. CNT surfaces are coated conformally with thin poly(glycidyl methacrylate) (PGMA) polymer film and coated nanoparticles are incorporated in poly(methyl methacrylate) (PMMA) polymer matrix using solvent casting technique. Conformal PGMA coatings around individual nanotubes were identified by scanning electron microscopy analysis. Transmission electron microscopy and optical microscopy analyses show homogeneous composite morphology for composites prepared by using PGMA coated nanotubes. Fourier Transform Infrared and X‐ray photoelectron spectroscopy analyses show the successful deposition of polymer with high retention of epoxide functionality. PGMA coating of CNTs exhibits improvement in electrical conductivity and tensile properties of PGMA‐CNT/PMMA systems when compared with uncoated nanoparticles. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
The effects of poly(vinyl carbazole) (PVK) doped to a poly(urethane acrylate) matrix in holographic‐polymer‐dispersed liquid crystals were studied. With the addition and increasing amounts of PVK, the driving voltage and rising time of the films decreased because of the increased effective local electric field across the liquid crystal (LC) droplet. Off‐state diffraction efficiency was increased with the addition and increasing amounts of PVK presumably because of the increased elasticity of the polymer matrix, which augmented the phase separation of the polymer and LC by effectively squeezing the LC molecules out of the polymer matrix. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
The ordering behavior of polymer nanocomposites composed of gold nanoparticles confined in the polystyrene (PS) domains of PS based block copolymers was investigated. The results reveal that the self‐assembly of nanoparticles in the PS domains improved the ordering of microdomains. This is attributed to the presence of nanoparticles that reduced the degree of segregation of the system, causing slow phase separation. This facilitates the packing of the cylindrical microdomains, leading to a well‐ordered structure of the composite. When particles were incorporated into the major domains of cylindrically ordered block copolymer, the connectivity of the domains allowed particles to move to the top of the film to gain additional entropy of the system. In contrast, when particles were organized in parallel cylinders in the block copolymer, they were confined in the cylinders which prevented them from diffusing in the depth direction. The aggregation of nanoparticles was amplified when the composite was annealed in air. We believe that the results from this study will enable more understanding of the effects of nanoparticles on the ordering of block copolymer/nanoparticle composite thin films and will provide a tool in the fabrication of composite thin films. Copyright © 2012 Society of Chemical Industry  相似文献   

13.
Poly[3-3′(vinylcarbazole)] (PVK) was synthetized with N-vinylcarbazole as monomer by oxidative polymerization with ferric chloride. The resulting polymer was then deposited on various solid supports by using Langmuir-Schaefer (LS) method. The pressure-area isotherm of PVK revealed the possibility of compact monolayer formation at air-water interface. Different layers of PVK were doped with iodine vapours. Both scanning probe microscopy and optical microscopy images indicated a good uniformity of the films. The morphology and the thickness of PVK films were investigated using atomic force microscopy. The voltammetric investigation of I2 doped PVK showed a distinctive electrochemical behaviour. The photoinduced charge transfer across a donor/acceptor (D/A) hybrid interface provided an effective method to study the photoelectrochemical properties of the composite LS films.  相似文献   

14.
A series of polymer light emitting devices (PLEDs) based on the composite films of N‐arylbenzimidazoles trimer (TPBI), poly (n‐vinylcarbazole) (PVK), and a triarylaminooxadiazole‐containing tetraphenylsilane light emitting polymer (PTOA) were investigated. Electroluminescence (EL) performance is enhanced with doped TPBI into the light‐emitting layer for the PTOA‐based devices. A deep blue emission (Commission Internationale de L'Eclairage (CIEx,y) corodinates (0.16,0.06)) is obtained for the TPBI‐PTOA‐based device. Brightness and current efficiency of the TPBI‐PTOA‐based device can be as high as 961 cd/m2 and 1.85 cd/A, respectively. The EL performances of TPBI‐PTOA composite film‐based devices are further enhanced by inserting a TPBI layer into the light emitting layer and cathode interface for a better electron and hole charge balance. Doping TPBI into the light‐emitting layer of PVK‐PTOA is not favorable for enhanced EL performances. Brightness and current efficiency reduced with increasing TPBI content for the TPBI‐PVK‐PTOA‐based devices. Similar results are obtained for devices based on the TPBI‐PVK‐PTOA/TPBI bi‐layer composite solid film. Morphology and charge balance effects on EL performances of TPBI‐PTOA and TPBI‐PVK‐PTOA composite films based PLEDs are discussed in detail. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
Modified carbon nanotubes (m‐CNTs) were successfully prepared by the interactions between nitric and sulfuric acids and CNTs, which was confirmed using Fourier transform infrared spectroscopy. Poly[(vinylidene fluoride)‐co‐hexafluoropropylene]‐based composite polymer electrolyte (CPE) membranes doped with various amounts of m‐CNTs were prepared by phase inversion method. The desired CPEs were obtained by soaking the liquid electrolytes for 30 min. The physicochemical and electrochemical properties of the CPE membranes were investigated using scanning electron microscopy, X‐ray diffraction, thermogravimetry, electrochemical impedance spectroscopy and linear sweep voltammetry. The results show that the CPE membranes doped with 2.2 wt% m‐CNTs possess the smoothest surface and the highest decomposition temperature about 450 °C. Obviously, adding an appropriate amount of m‐CNTs into the polymer matrix can decrease the crystallinity and enhance the ionic conductivity; the temperature dependence of ionic conductivity follows the Arrhenius relation and the ionic conductivity at room temperature is up to 4.9 mS cm?1. The interfacial resistance can reach a stable value of about 415 Ω cm?2 after 10 days storage. The excellent rate and cycle performances with an electrochemical working window up to 5.4 V ensure that the CPEs doped with 2.2 wt% m‐CNTs can be considered as potential candidates as polymer electrolyte for lithium ion batteries. © 2013 Society of Chemical Industry  相似文献   

16.
The bulk polymerization reaction of N-vinylcarbazole (VK) at 70 °C in the presence of single-walled carbon nanotubes (SWNTs) leads to a new composite, whose optical properties were studied by photoluminescence (PL), surface enhanced Raman scattering (SERS) and Fourier transform infrared (FTIR) spectroscopies. A dramatic reduction of the poly(N-vinylcarbazole) (PVK) PL efficiency and a change in the vibrational structure of the PL spectrum of this polymer were observed by adding SWNTs to the synthesis mixture. Steric hindrance effects were evidenced both in SERS spectra of the VK when it interacts mechanico-chemically with SWNTs and in FTIR spectra of the un-doped PVK/SWNTs' composites. Cyclic voltammetry was used to demonstrate the doping process of PVK in PVK/SWNTs' composite.  相似文献   

17.
This paper reports on the synthesis of the nanoenergetic composites containing CuO nanorods and nanowires, and Al‐nanoparticles. Nanorods and nanowires were synthesized using poly(ethylene glycol) templating method and combined with Al‐nanoparticles using ultrasonic mixing and self‐assembly methods. Poly(4‐vinylpyridine) was used for the self‐assembly of Al‐nanoparticles around the nanorods. At the optimized values of equivalence ratio, sonication time, and Al‐particle size, the combustion wave speed of 1650 m s−1 was obtained for the nanorods‐based energetics. For the composite of nanowires and Al‐nanoparticles the speed was increased to 1900 m s−1. The maximum combustion wave speed of 2400 m s−1 was achieved for the self‐assembled composite, which is the highest known so far among the nanoenergetic materials. It is possible that in the self‐assembled composites, the interfacial contact between the oxidizer and fuel is higher and resistance to overall diffusional process is lower, thus enhancing the performance.  相似文献   

18.
A series of Janus composite poly(3‐hexyl thiophene)‐b‐poly(3‐thiophenehexanethiol)–gold nanoparticles were synthesized by self‐assembly at the water–oil interface, and their photoelectric performance was investigated. The results show that the precise Janus composite nanostructure could be controlled by the adjustment of the reaction temperature and stirring time. The UV–visible measurement revealed that the absorption maximum had an appreciable redshift, and the photoluminescence (PL) spectra indicated that the PL intensity of poly(3‐hexyl thiophene)‐b‐poly[3‐(6‐thiolhexyl thiophene)] decreased upon the addition of gold nanoparticles. In addition, compared to a common composite of poly(3‐hexyl thiophene), the conductivity properties of the Janus composite nanostructure increased remarkably. Therefore, the Janus composite nanoparticles have the potential for applications in photovoltaic devices. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45107.  相似文献   

19.
Since emulsions tend to become unstable with increasing temperature, reactions in emulsions are usually not performed at high temperatures. We show that non-aqueous inverse miniemulsions are relatively stable at temperatures higher than 150 °C. As an example of this remarkable stability, composite particles consisting of Ag nanoparticles and a polymer were synthesized via the polyol process in the monomer droplets to reduce silver ions to silver followed by the polymerization of the monomer. Silver nanoparticles were hence embedded in polyvinylpyrrolidone matrix particles. We showed here that non-aqueous miniemulsion nanodroplets are suitable loci for reactions performed at high temperature.  相似文献   

20.
γ‐Fe2O3polystyrene (PS) composite films were prepared by a gel‐casting technique to obtain monodisperse composite films. To understand the effect of additives on the prepared composite films, additives such as rice husk ash and thiourea were made to disperse into the PS matrix. The as‐prepared γ‐Fe2O3 PS composite films, along with their additives, were subjected to characterization and study by X‐ray diffraction, scanning electron microscopy, thermal, IR, and dielectric measurement techniques. These studies showed monodisperse and chemically homogenous composite films with an increase in thermal behavior. An interesting self‐assembly of rod‐like nanoparticles of γ‐Fe2O3 particles into the polymer matrix, which formed spherical packets, was observed for the γ‐Fe2O3PS composite film. The electrical behavior of these films was interesting, as some showed conduction whereas others showed an increase in dielectric behavior. This nature was explained by the dielectric measurements. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 778–788, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号