首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method to produce nanocomposite polymer electrolytes consisting of poly(ethylene oxide) (PEO) as the polymer matrix, lithium tetrafluoroborate (LiBF4) as the lithium salt, and TiO2 as the inert ceramic filler is described. The ceramic filler, TiO2, was synthesized in situ by a sol–gel process. The morphology and crystallinity of the nanocomposite polymer electrolytes were examined by scanning electron microscopy and differential scanning calorimetry, respectively. The electrochemical properties of interest to battery applications, such as ionic conductivity, Li+ transference number, and stability window were investigated. The room‐temperature ionic conductivity of these polymer electrolytes was an order of magnitude higher than that of the TiO2 free sample. A high Li+ transference number of 0.51 was recorded, and the nanocomposite electrolyte was found to be electrochemically stable up to 4.5 V versus Li+/Li. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2815–2822, 2003  相似文献   

2.
Polyvinyl formal based polymer electrolyte membranes are prepared via the optimized phase inversion method with poly(ethylene oxide) (PEO) blending. The physical properties of blend membranes and the electrochemical properties of corresponding gel polymer electrolytes (GPEs) are characterized by field emission scanning electron microscopy, X‐ray diffraction, differential scanning calorimetry, mechanical strength test, electrolyte uptake test, AC impedance spectroscopy, cyclic voltammetry, and galvanostatic charge–discharge test. The comparative study shows that the appearance of PEO obviously enhances the tensile strength of membranes and the ionic conductivity of corresponding GPEs. When the weight ratio of PEO is 30%, the tensile strength of membrane achieves 12.81 MPa, and its GPE shows high ionic conductivity of 2.20 × 10−3 S cm−1, wide electrochemical stable window of 1.9–5.7 V (vs. Li/Li+), and good compatibility with LiFePO4 electrode. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41839.  相似文献   

3.
Solvents and electrolytes play an important role in the fabrication of dye‐sensitized solar cells (DSSCs). We have studied the poly(ethylene oxide)‐poly(methyl methacrylate)‐KI‐I2 (PEO‐PMMA‐KI‐I2) polymer blend electrolytes prepared with different wt % of the 2‐mercaptopyridine by solution casting method. The polymer electrolyte films were characterized by the FTIR, X‐ray diffraction, electrochemical impedance and dielectric studies. FTIR spectra revealed complex formation between the PEO‐PMMA‐KI‐I2 and 2‐mercaptopyrindine. Ionic conductivity data revealed that 30% 2‐mercaptopyridine‐doped PEO‐PMMA‐KI‐I2 electrolyte can show higher conductivity (1.55 × 10?5 S cm?1) than the other compositions (20, 40, and 50%). The effect of solvent on the conductivity and dielectric of solid polymer electrolytes was studied for the best composition (30% 2‐mercaptopyridine‐doped PEO‐PMMA‐KI‐I2) electrolyte using various organic solvents such as acetonitrile, N,N‐dimethylformamide, 2‐butanone, chlorobenzene, dimethylsulfoxide, and isopropanol. We found that ac‐conductivity and dielectric constant are higher for the polymer electrolytes processed from N,N‐dimethylformamide. This observation revealed that the conductivity of the solid polymer electrolytes is dependent on the solvent used for processing and the dielectric constant of the film. The photo‐conversion efficiency of dye‐sensitized solar cells fabricated using the optimized polymer electrolytes was 3.0% under an illumination of 100 mW cm?2. The study suggests that N,N‐dimethylformamide is a good solvent for the polymer electrolyte processing due to higher ac‐conductivity beneficial for the electrochemical device applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42489.  相似文献   

4.
BACKGROUND: Polymer electrolytes have attracted considerable attention as regards portable solid‐state electrochemical device applications. The present investigation is focused on the characterization of a new Na+ ion conducting polymer electrolyte (PEO)6:NaPO3 dispersed with 3–10 wt% BaTiO3 (0.7 µm) fillers. The composite polymer electrolytes (CPEs) were prepared by a solution‐casting method and characterized using various physical measurement techniques. RESULTS: Differential scanning calorimetry results indicate a maximum reduction in the degree of crystallinity of the polymer from 62.6% for uncomplexed poly(ethylene oxide) (PEO) to 27.6% for the CPE with 6 wt% BaTiO3. This substantiates an enhancement in the amorphous phase of the polymer inferred from X‐ray diffraction and optical micrographs. The CPE dispersed with 6 wt% BaTiO3 is found to be the best composition exhibiting a maximum ionic conductivity of 1.2 × 10?6 S cm?1 at 345 K with cationic transport number (t) of 0.33. CONCLUSIONS: An enhancement in the ionic conductivity of about two orders of magnitude is achieved for the composite electrolytes when compared to filler‐free solid polymer electrolyte. Correlation of the temperature‐dependent conductivity, activation energy for ion migration and transport number enables an understanding of the role played by the fillers in conduction characteristics of the CPEs. Copyright © 2007 Society of Chemical Industry  相似文献   

5.
2-(2-methyloxyethoxy)ethanol modified poly (cyclotriphosphazene-co-4,4′-sufonyldiphenol) (PZS) nanotubes were synthesized and solid composite polymer electrolytes based on the surface modified polyphosphazene nanotubes added to PEO/LiClO4 model system were prepared. Differential Scanning Calorimetry (DSC) and Scanning Electron Microscopy (SEM) were used to investigate the characteristics of the composite polymer electrolytes (CPE). The ionic conductivity, lithium ion transference number and electrochemical stability window can be enhanced after the addition of surface modified PZS nanotubes. The electrochemical investigation shows that the solid composite polymer electrolytes incorporated with PZS nanotubes have higher ionic conductivity and lithium ion transference number than the filler SiO2. Maximum ionic conductivity values of 4.95 × 10−5 S cm−1 at ambient temperature and 1.64 × 10−3 S cm−1 at 80 °C with 10 wt % content of surface modified PZS nanotubes were obtained and the lithium ion transference number was 0.41. The good chemical properties of the solid state composite polymer electrolytes suggested that the inorganic-organic hybrid polyphosphazene nanotubes had a promising use as fillers in solid composite polymer electrolytes and the PEO10-LiClO4-PZS nanotubes solid composite polymer electrolyte can be used as a candidate material for lithium polymer batteries.  相似文献   

6.
The potential of poly(ethylene oxide) (PEO) and 49% poly(methyl methacrylate) grafted natural rubber (MG49) as a polymer host in solid polymer electrolytes (SPE) was explored for electrochemical applications. PEO–MG49 SPEs with various weight percentages of lithium perchlorate salt (LiClO4) was prepared with the solution casting technique. Characterization by scanning electron microscopy, Fourier transform infrared spectroscopy, and impedance spectroscopy was done to investigate the effect of LiClO4 on the morphological properties, chemical interaction, and ionic conductivity behavior of PEO–MG49. Scanning electron microscopy analysis showed that the surface morphology of the sample underwent a change from rough to smooth with the addition of lithium salts. Infrared analysis showed that the interaction occurred in the polymer host between the oxygen atom from the ether group (C? O? C) and the Li+ cation from doping salts. The ionic conductivity value increased with the addition of salts because of the increase in charge carrier up to the optimum value. The highest ionic conductivity obtained was 8.0 × 10?6 S/cm at 15 wt % LiClO4. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
Two polar polymers with different dielectric constants, poly(vinylidene fluoride) (PVDF) and poly(ethylene oxide) (PEO), were each blended with a chlorine-terminated poly(ethylene ether) (PEC) and one of the two salts, LiBF4 and LiCF3CO2, to form PEC plasticized polymer electrolytes. The room-temperature ionic conductivity of the PEC plasticized polymer electrolytes reached a value as high as 10?4 S/cm. The room-temperature ionic conductivity of the PVDF-based polymer electrolytes displayed a stronger dependence on the PEC content than did the PEO-based polymer electrolytes. In PVDF/PEC/LiBF4 polymer electrolytes, the dynamic ionic conductivity was less dependent on temperature and more dependent on the PEC content than it was in PEO/PEC/LiBF4 polymer electrolytes. The highly plasticized PVDF-based polymer electrolyte film with a PEC content greater than CF4 (CF4 defined as the molar ratio of the repeat units of PEC to those of PVDF equal to 4) was self-supported and nonsticky, while the corresponding PEO-based polymer electrolyte film was sticky. In these highly plasticized PVDF-based polymer electrolytes, the curves of the room-temperature ionic conductivity vs. the salt concentration were convex because the number of carrier ions and the chain rigidity both increased with increase of the salt content. The maximum ionic conductivity at 30°C was independent of the PEC content, but it depended on the anion species of the lithium salts in these highly plasticized polymer electrolytes. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
The polymer electrolytes based on a polymerized ionic liquid (PIL) as polymer host and containing 1,2‐dimethyl‐3‐butylimidazolium bis(trifluoromethanesulfonyl)imide (BMMIM‐TFSI) ionic liquid, lithium TFSI salt, and nanosilica are prepared. The PIL electrolyte presents a high ionic conductivity, and it is 1.07 × 10?3 S cm?1 at 60°C, when the BMMIM‐TFSI content reaches 60% (the weight ratio of BMMIM‐TFSI/PIL). Furthermore, the electrolyte exhibits wide electrochemical stability window and good lithium stripping/plating performance. Preliminary battery tests show that Li/LiFePO4 cells with the PIL electrolytes are capable to deliver above 146 mAh g?1 at 60°C with very good capacity retention. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40928.  相似文献   

9.
Nanocomposite polymer electrolytes consisting of low molecular weight poly(ethylene oxide) (PEO), iodine salt MI (M = K+, imidazolium+), and fumed silica nanoparticles have been prepared and characterized. The effect of terminal group in PEO, i.e., hydroxyl (? OH) and methyl (CH3) using poly(ethylene glycol) (PEG) and PEO dimethyl ether (PEODME), respectively, was investigated on the interactions, structures, and ionic conductivities of polymer electrolytes. Wide angle X‐ray scattering (WAXS), differential scanning calorimetry (DSC), and complex viscositymeasurements clearly showed that the gelation of PEG electrolytes occurred more effectively than that of PEODME electrolytes. It was attributed to the fact that the hydroxyl groups of PEG participated in the hydrogen‐bonding interaction between silica nanoparticles, and consequently helped to accelerate the gelation reaction, as confirmed by FTIR spectroscopy. Because of its interaction, the ionic conductivities of PEG electrolytes (maximum value ~ 6.9 × 10?4 S/cm) were lower than that of PEODME electrolytes (2.3 × 10?3 S/cm). © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

10.
Three new polymeric aromatic lithium sulfonylimides were used as salts in high molecular weight poly(ethylene oxide) (PEO) electrolytes. Their conductivity and electrochemical stability behaviors were investigated. The electrolytes with lithium poly[4,4′‐(hexafluoroisopropylidene)diphenoxy]sulfonylimide (LiPHFIPSI) showed a better conductive performance compared with the other two lithium salts. The best conductivity was obtained for PEO/LiPHFIPSI EO/Li = 16 (1.90 × 10?4 S/cm at 60°C). Thermal analysis indicated that the salts effectively decreased the crystallinity of PEO. Moreover, the electrolytes also had good electrochemical stability and their oxidative potential was to 5.5 V versus Li/Li+. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1802–1805, 2002  相似文献   

11.
In order to enhance the ionic conductivity of polyethylene oxide (PEO)-KOH based alkaline polymer electrolytes, three types of nano-powders, i.e., TiO2, β-Al2O3 and SiO2 were added to PEO-KOH complex, respectively, and the corresponding composite alkaline polymer electrolytes were prepared. The experimental results showed that the prepared polymer electrolytes exhibited higher ionic conductivities at room temperature, typically 10−3 S cm−1 as measured by ac impedance method, and good electrochemical stability. The electrochemical stability window of ca. 1.6 V was determined by cyclic voltammetry with stainless steel blocking electrodes. The influence of the film composition such as KOH, H2O and nano-additives on ion conductivity was investigated and explained. The temperature dependence of conductivity was also determined. In addition, polyvinyl alcohol (PVA)-sodium carboxymethyl cellulose (CMC)-KOH alkaline polymer electrolytes were obtained using solvent casting method. The properties of the polymer electrolytes were characterized by ac impedance, cyclic voltammetry and differential thermal analysis methods. The ionic conductivity of the prepared PVA-CMC-KOH-H2O electrolytes can reach the order of 10−2 S cm−1. The effect of CMC addition on the alkaline polymer electrolytes was also explained. The experimental results demonstrated that the PVA-CMC-KOH-H2O polymer electrolyte could be used in Ni/MH battery.  相似文献   

12.
The interaction behavior of solid‐state polymer electrolytes composed of poly(ethylene oxide) (PEO)/novolac‐type phenolic resin and lithium perchlorate (LiClO4) was investigated in detail by DSC, FTIR, ac impedance, DEA, solid‐state NMR, and TGA. The hydrogen bonding between the hydroxyl group of phenolic and ether oxygen of the PEO results in higher basicity of the PEO. The higher basicity of the ether group can dissolve the lithium salts more easily and results in a greater fraction of “free” anions and thus higher ionic conductivity. DEA results demonstrated that addition of the phenolic increases the dielectric constant because of the partially negative charge on the ether group induced by the hydrogen bonding interaction between ether oxygen and the hydroxyl group. The study showed that the blend of PEO(100)/LiClO4(25)/phenolic(15) possesses the highest ionic conductivity (1.5 × 10?5 S cm?1) with dimensional stability. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1207–1216, 2004  相似文献   

13.
Hybrid polymer dry electrolytes comprised of poly(ethylene oxide) (PEO), polyacrylonitrile (PAN), and LiClO4 were investigated. The impedance spectroscopy showed that the effect of PAN on the ion conductivity of PEO‐based electrolytes depends on the concentration of lithium salt. When the mole ratio of lithium to oxygen is 0.062 (15%LiClO4‐PEO), adding PAN will increase the ionic conductivity. Differential scanning calorimetry, NMR, and IR data suggested that the enhanced conductivity was due to both the decreasing of the PEO crystallinity and increasing of the degree of ionization of lithium salt. There was obviously no interaction between PAN and lithium ions, and PAN acts as a reinforcing filler, and hence contributes to the mechanical strength besides reducing the crystallinity of the polymer electrolytes. When the LiClO4‐PEO‐PAN hybrid polymer electrolyte was heated at 200°C under N2, PAN crosslinked partially, which further decreased the crystallinity of PEO and increased the ionic conductivity, and at the same time prevented the recrystallization of PEO upon sitting at ambient environment. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1530–1540, 2006  相似文献   

14.
Nanocomposite polymer electrolytes (NCPE) were prepared using nano polyethylene oxide PEO doped with Magnesium (Mg) salts. Gamma irradiation was utilized to improve the PEO‐Mg salts particle sizes. Consequently, Magnesium Oxide (MgO) nanoparticles were prepared by green synthesis and incorporated into PEO‐Mg salts to improve their properties toward magnesium battery electrolyte applications. The prepared samples were examined before and after exposures to the radiation doses. Dynamic light scattering (DLS) indicated the particles size of the synthesized nano polymer‐Mg salts and MgO nanoparticles. Fourier transform infra‐red (FTIR) spectroscopic measurements, transmission electron microscopy (TEM), electrical conductivity, electrochemical properties, and thermal stability of the samples were determined. FTIR indicated the interaction between PEO with Mg salts and MgO nanoparticles which confirmed the structure. The TEM results showed a spherical nanoparticles of MgO and a good dispersion of MgO in PEO matrix. It was found that the irradiation dose 70 kGy gave the best results for the nano polymer‐Mg salts (13 nm). The electrical conductivity (σ) evaluated for NCPE, was more than three orders of magnitude of pure PEO. The liquid NCPE of 20 mL MgO NPs at 100 kGy exhibited a maximum conductivity of 3.63 × 10–3 Scm?1 at room temperature. The increase in temperature caused a slight effect on conductivity, 4.85 × 10–3 Scm?1 at temperature 250°C, at the same concentration. While un‐irradiated sample of 30 mL MgO NPs (σ) reached to 3.8 × 10?3 Scm?1 then became 5.03 × 10?3 Scm?1 by increasing temperature. From the cyclic voltammetry results, the polymer electrolytes containing MgO filler, 20 and 30 mL, for irradiated and un‐irradiated samples, respectively exhibited wider electrochemical stability window than the others due to the appearance of Mg deposition/desolution peak in CV curve showed that magnesium effectively migrating through electrolytes. Thermogravimetric analysis (TGA) was enhanced by adding Mg salts electrolyte and also MgO nanoparticles to PEO. J. VINYL ADDIT. TECHNOL., 25:243–254, 2019. © 2018 Society of Plastics Engineers  相似文献   

15.
A series of new gel polymer electrolytes (GPEs) based on different concentrations of a hydrophobic ionic liquid (IL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (EMIMTFSI) entrapped in an optimized typical composition of polymer blend-salt matrix [poly(vinyl chloride) (PVC) (30 wt%) / poly(ethyl methacrylate) (PEMA) (70 wt%) : 30 wt% zinc triflate Zn(CF3SO3)2] has been prepared using facile solution casting technique. The AC impedance analysis has revealed the occurrence of the maximum ionic conductivity of 1.10 × 10?4 Scm?1 at room temperature (301 K) exhibited by the PVC/PEMA- Zn(OTf)2 system containing 80 wt% ionic liquid. The addition of EMIMTFSI into the optimized PVC/PEMA- Zn(OTf)2 system in different weight percentages enhances the number of free zinc ions thereby leading to enrichment of ionic conductivity. The structural and complexation behaviour of the as prepared polymer gel electrolytes was substantiated by subjecting these electrolyte films to X-ray diffraction (XRD) and Attenuated total reflectance - Fourier transformed infrared (ATR-FTIR) investigations. The wider electrochemical stability window ~ 3.23 V and a reasonable cationic transference number (tZn 2+) of 0.63 have been attained for the polymer gel electrolyte film containing higher loading of (80 wt%) ionic liquid. The development of the amorphous phase of these gel polymer electrolyte membranes with increasing ionic liquid content was observed from scanning electron microscopic (SEM) analysis. The results of the current work divulge the assurance of developing GPEs based on ionic liquids for prospective application in zinc battery systems.  相似文献   

16.
To improve the electrochemical properties and enhance the mechanical strength of solid polymer electrolytes, series of composite polymer electrolytes (CPEs) were fabricated with hybrids of thermoplastic polyurethane (TPU) electrospun membrane, polyethylene oxide (PEO), SiO2 nanoparticles and lithium bis(trifluoromethane)sulfonamide (LiTFSI). The structure and properties of the CPEs were confirmed by SEM, XRD, DSC, TGA, electrochemical impedance spectroscopy and linear sweep voltammetry. The TPU electrospun membrane as the skeleton can improve the mechanical properties of the CPEs. In addition, SiO2 particles can suppress the crystallization of PEO. The results show that the TPU‐electrospun‐membrane‐supported PEO electrolyte with 5 wt% SiO2 and 20 wt% LiTFSI (TPU/PEO‐5%SiO2‐20%Li) presents an ionic conductivity of 6.1 × 10?4 S cm?1 at 60 °C with a high tensile strength of 25.6 MPa. The battery using TPU/PEO‐5%SiO2‐20%Li as solid electrolyte and LiFePO4 as cathode shows an attractive discharge capacity of 152, 150, 121, 75, 55 and 26 mA h g?1 at C‐rates of 0.2C, 0.5C, 1C, 2C, 3C and 5C, respectively. The discharge capacity of the cell remains 110 mA h g?1 after 100 cycles at 1C at 60 °C (with a capacity retention of 91%). All the results indicate that this CPE can be applied to all‐solid‐state rechargeable lithium batteries. © 2018 Society of Chemical Industry  相似文献   

17.
《Polymer Composites》2017,38(4):629-636
In this study, poly(vinylidene fluoride) (PVDF)/polyhedral oligomeric silsesquioxanes (POSS) nanofibrous membranes are prepared through electrospun process. Field emission scanning electron microscope images clearly show that PVDF/POSS membranes have interconnected multi fibrous layers with ultrafine porous structures. The average fiber diameter and crystallinity of PVDF/POSS membranes are lesser than that of pure PVDF membrane. Thermal stability and electrolyte uptake of blend membranes increase with increasing POSS content. Finally, PVDF/POSS membranes are soaked in a liquid electrolyte to form the polymer electrolytes and are assembled in coin cells to test their electrochemical properties such as ionic conductivity, interfacial characteristics, and electrochemical stability windows. The ionic conductivity improves with increasing POSS content and the highest ionic conductivity reaches 2.91 × 10−3 S/cm at room temperature. It is also worth mention that the composite polymer electrolytes show low interfacial resistance and high electrochemical stability window of 5.6 V (vs. Li+ /Li) with storage time. POLYM. COMPOS., 38:629–636, 2017. © 2015 Society of Plastics Engineers  相似文献   

18.
A series of star block polymers with a hyperbranched core and 26 arms are successfully synthesized by atom transfer radical polymerization of styrene (St), and poly(ethylene glycol) methyl ether methacrylate from a hyperbranched polystyrene (HBPS) multifunctional initiator. All‐solid polymer electrolytes composed of these multiarm star polymers and lithium salts are prepared. The influences of polyoxyethylene (PEO) side‐chain length, PEO content, lithium salt concentration and type, and the structure of polymer on ionic conductivity are systematically investigated. The resulting polymer electrolyte with the longest PEO side chains exhibits the best ionic conductive properties. The maximum conductivity is 0.8 × 10?4 S cm?1 at 25°C with EO/Li = 30. All the prepared multiarm star block polymers possess good thermal stability. The mechanical property is greatly improved owing to the existence of polystyrene blocks in the multiarm star polymer molecules, and flexible films can be obtained by solution‐casting technique. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
Achievement of high conductivity and electrochemical window at ambient temperature for an all‐solid polymer electrolyte used in lithium ion batteries is a challenge. Here, we report the synthesis and characterization of a novel solid‐state single‐ion electrolytes based on comb‐like siloxane copolymer with pendant lithium 4‐styrenesulfonyl (perfluorobutylsulfonyl) imide and poly(ethylene glycol). The highly delocalized anionic charges of ? SO2? N(–)? C4F9 have a weak association with lithium ions, resulting in the increase of mobile lithium ions number. The designed polymer electrolytes possess ultra‐low glass transition temperature in the range from ?73 to ?54 °C due to the special flexible polysiloxane. Promising electrochemical properties have been obtained, including a remarkably high conductivity of 3.7 × 10?5 S/cm and electrochemical window of 5.2 V (vs. Li+/Li) at room temperature. A high lithium ion transference number of 0.80, and good compatibility with anode were also observed. These prominent characteristics endow the polymer electrolyte a potential for the application in high safety lithium ion batteries. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45848.  相似文献   

20.
The sample preparation pathway of solid polymer electrolytes (SPEs ) influences their thermal properties, which in turn governs the ionic conductivity of the materials especially for systems consisting of a crystallizable constituent. Majority of poly(ethylene oxide) (PEO)‐based SPEs with molar masses of PEO well above 104 g mol?1 (where PEO is crystallizable and should reach an asymptote in thermal behaviour) display molar mass dependence of the thermal properties and ionic conductivities in non‐equilibrium conditions, as reported in the literature. In this study, PEO of different viscosity‐molar masses (M η = 3 × 105, 6 × 105, 1 × 106, 4 × 106 g mol?1) and LiClO4 salt (0 to 16.7 wt%) were used. The SPEs were thermally treated under inert atmosphere above the melting temperature of PEO and then cooled down for subsequent isothermal crystallization for sufficient experimental time to develop morphology close to equilibrium conditions. The thermal properties (e.g. glass transition temperature, melting temperature, crystallinity) according to differential scanning calorimetry and the ionic conductivity obtained from impedance spectroscopy at room temperature (σ DC ~ 10?6 S cm?1) demonstrate insignificant variation with respect to the molar mass of PEO at constant salt concentration. These findings are in agreement with the PEO crystalline structures using X‐ray diffraction and ion ? dipole interaction by Fourier transform infrared results. © 2017 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号