首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The mechanical behavior of microfibrilar composites (MFC), consisting of a matrix of high‐density polyethylene (HDPE) and reinforcement of polyamide 6 (PA6) fibrils, with and without compatibilization, was studied. The composites were produced by conventional processing techniques with various shape and arrangement of the PA6 reinforcing entities: long, unidirectional, or crossed bundles of fibrils (UDP and CPC, respectively), middle‐length, randomly oriented bristles (MRB), or non‐oriented micrometric PA6 spheres (NOM). The tensile, flexural, and impact properties of the MFC materials (UDP, CPC, and MRB) were determined as a function of the PA6 reinforcement shape, alignment and content, and compared with those of NOM, the non‐fibrous composite. It was concluded that the in‐situ MFC materials based on HDPE/PA6 blends display improvements in the mechanical behavior when compared with the neat HDPE matrix, e.g., up to 33% for the Young modulus, up to 119% for the ultimate tensile strength, and up to 80% for the flexural stiffness. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

2.
Effect of layered silicates on structure of microfibrillar composites (MFCs) with reinforcing PA6 fibrils formed in situ by melt drawing was studied. Clay was added to HDPE/PA6 MFC using different mixing protocols including simultaneous addition, application of pre‐made masterbatches with both constituents and their combinations. In all cases, majority of nanofiller (NF) was contained inside PA6 fibrils. On the other hand, fibrils dimensions were significantly affected by the clay addition protocol; their marked increase in the case of simultaneous addition of all components and application of HDPE/C30 nanocomposite indicate important effect of NF migration to the PA6 phase in the course of mixing and melt drawing. The effect of properties of PA6 and HDPE phases and NF migration on the morphology evolution is discussed. It is shown that the fiber shape and volume after sample drawing are controlled by the interplay between the dispersed fibril extension and coalescence. POLYM. ENG. SCI., 55:2133–2139, 2015. © 2015 Society of Plastics Engineers  相似文献   

3.
Microfibrillar composites (MFCs) with reinforcing fibrils formed in situ by melt drawing were modified by the addition of layered silicates using different mixing protocols, viz simultaneous addition of components, application of respective premade nanocomposites and their combinations. The objective was to combine reinforcement with changes in the final structure, especially the fibril dimensions. The presented results indicate good potential of the nanoclay to enhance the MFC based on the melt‐drawn HDPE/PA6 system. The best mechanical behavior was achieved with the simultaneous addition of all components. The majority of the nanofiller material was contained inside the PA6 fibrils. Both fibrils dimensions and mechanical behavior were significantly affected by the nanofiller migration to the PA6 phase in the course of mixing and melt drawing. Due to a complex effect of the clay, deterioration of mechanical properties was also found. As a result, numerous, in some cases contradictory, effects of nanofillers must be perfectly harmonized to improve the properties of MFCs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41868.  相似文献   

4.
采用熔融挤出——热拉伸——牵引拉伸制备了HDPE/PA6原位成纤增强复合材料,通过SEM分析了分散相PA6含量对其在基体中的形态及分布的影响;讨论了两种加工方式条件下分散相PA6含量对复合材料拉伸性能和冲击韧性的影响以及加工方式对复合体系力学性能的影响。结果表明:在原位成纤增强复合材料中存在直径为2~5 μm的纤维,当HDPE/PA6质量比为85/15时,微纤直径约为3 μm,此时,与普通共混复合材料相比,原位成纤增强复合材料的拉伸强度提高了6.9%,拉伸模量提高了14.8%,冲击强度提高10.03%。  相似文献   

5.
Oriented precursors of MFCs consisting of HDPE and PA6 or PA12 are studied during strain‐controlled slow load‐cycling. In the PA6‐containing blends a strongly retarded nanostrain response is detected. Compatibilization induces nanostrain heterogenization. Stress fatigue is lower in the PA12 blends, but hardly decreased by the compatibilizer. Selective migration of the compatibilizer into a disordered semi‐crystalline fraction of the HDPE matrix can explain the findings. The semi‐crystalline HDPE entities in PA6 blends appear more disordered than in PA12‐blends. An analysis of the HDPE nanostructure evolution during cycling reveals epitaxial strain crystallization. Uncompatibilized PA6 blends cycled about high pre‐strain show plastic flow but nanoscopic shrinkage in the semi‐crystalline stacks.

  相似文献   


6.
The morphological, mechanical, thermal, and tribological properties of high‐density polyethylene (HDPE) composites reinforced with organo‐modified nanoclay (3 and 6 wt%) were studied. A commercial maleic anhydride‐based polymeric compatibilizer (PEgMA) was used to improve the adhesion between the polyethylene and clay. Transmission electron microscopy (TEM) characterization of composites revealed that nanoclay exists mainly in a multilayered structure in the HDPE matrix. Mechanical testing of composites showed that Young's modulus and tensile strength increased with nanoclay content. Coefficients of the linear thermal expansion (CLTE) of HDPE–PEgMA–clay composites were slightly lower in the flow direction than those of HDPE–PEgMA. The tribological properties were measured in dry conditions against a steel counterface. The friction coefficient of the matrix was decreased by the addition of clay. Electron microscopic results suggested that the wear mechanism for HDPE and HDPE composites was mainly adhesive. Clay agglomerates were observed on the worn surfaces of the composites, which may partly explain decreased friction. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

7.
The high density polyethylene (HDPE) and polyamide 6 (PA6) blend melts with a droplet‐matrix microstructure were investigated using ultrasonic diagnosis system. The blend composition, as well as the particle size of the dispersed PA6 phase controlled by adding various amounts of the reactive compatibilizer HDPE grafted with maleic anhydride (HDPE‐g‐MAH), was, respectively, correlated with the ultrasonic velocity and attenuation. The results showed that ultrasonic velocity was insensitive to the particle size but varied linearly with the blend composition. However, the decrease of ultrasonic attenuation with the increasing content of HDPE‐g‐MAH suggested that the attenuation depended greatly on the particle size. Further investigations revealed that there was a good linear relationship between the excess attenuation and the size of the dispersed phase. Our results present that ultrasonic technique may be served as a promising technique for exploring phase morphology of polymer blends during processing. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

8.
High density polyethylene (HDPE) and polyamide (PA66) are well known to be incompatible. An ionomer (Surlyn) was added as a compatibilizer to HDPE and glass fiber reinforced (HDPE/GFRPA66) and non‐reinforced (HDPE/PA66) blends. Two compositions were considered: 25/75 wt % and 75/25 wt %, with an emphasis on the former formulation. The influence of the compatibilizer on the rheology, thermal properties, and the morphology, as well as mechanical properties of the blends, was investigated using melt flow index measurements, DSC, scanning electron microscopy (SEM), and impact strength. The ionomer was found to be more effective as a compatibilizer with HDPE as a minor phase compared to the case when HDPE becomes the major phase. The results indicated that the interfacial properties of the blends were improved, with a maximum appearing at a critical concentration of the ionomer (7.5 vol %). At this level of compatibilization, SEM analysis revealed better interfacial adhesion and a finer dispersion. MFI results revealed a probable reaction between the amine groups of PA66 and the acid functions of the ionomer. The mechanical properties support the above results and showed that the addition of 25 wt % HDPE did not affect the properties of PA66 much and the presence of glass fiber did not hinder the effect of the compatibilizer. Only 20% decrease in notched Izod impact strength of the blends is observed at 7.5 vol % ionomer content, suggesting that the addition of 25 wt % of HDPE to PA66 is not detrimental at this level of compatibilization. The emulsification curve was established and revealed that, in terms of impact properties, the finer the particle size, the higher the impact strength corresponding to 7.5 vol % ionomer content. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1748–1760, 2005  相似文献   

9.
Summary: Long glass fiber reinforced PA6 (LGF/PA6) prepregs were prepared by impregnating PA6 oligomer melt into reinforcing glass fiber followed by subsequent solid‐state polymerization (SSP) to obtain LGF/PA6 composite pellets. A conventional injection‐molding machine suitable for short glass fiber reinforced composites was applied to the processing of the prepared composites, which reduced the fiber length in the final products. Mechanical properties, thermal property, and fiber length distribution of injection molding bars were investigated. Scanning electron microscopy (SEM) was used to observe the impact fracture surfaces and the surfaces of glass fiber after the SSP. It was found that the LGF/PA6 composites were of favorable mechanical properties, especially the impact strength, although the average length of glass fiber was rather short. By this novel process, the content of glass fiber in composite could be high up to 60 wt.‐% and the maximum level of heat distortion temperature (HDT) was close to the melting temperature of PA6. SEM images indicated the favorable interfacial properties between the glass fiber and matrix. The glass fiber surfaces were further observed by SEM after removing the matrix PA6 with a solvent, the results showed that PA6 macromolecules were grafted onto the surface. Furthermore, the grafting amount of PA6 was increased with SSP time.

SEM images of impact fracture surfaces of LGF/PA6 composites (left) and of glass fiber surfaces after removing PA6 with 5 h SSP (right).  相似文献   


10.
Polyethylene terephthalate/high density polyethylene (PET/HDPE) composites containing a near infrared reflective (NIR, nickel antimony titanium yellow rutile) pigment was prepared using ethylene‐glycidyl methacrylate‐vinyl acetate (EGMA‐VA) as a compatibilizer to increase the infrared reflection of PET/HDPE and limit the thermal heat accumulation in light of environmental and energy conservation concerns. HDPE was premixed with NIR to form N‐HDPE masterbatch. A good interfacial bonding between PET matrix and HDPE dispersed phase with the help of compatibilizer was confirmed through Fourier transform‐infrared spectra, scanning electron microscopy, and torque rheometer. For PET/N‐HDPE composites, the major X‐ray diffraction peaks and melting behaviors remained unchanged, indicating the limited alternation of crystalline structure for the composite systems with or without compatibilizer. The observed increment in the crystallization temperature of PET for the investigated PET/N‐HDPE composites was mainly due to the nucleation role of both inorganic NIR and HDPE. Tensile strength and elongation at break for compatibilized cases at various N‐HDPE contents conferred higher values than those of the corresponding counterparts without compatibilizer. Yet, Young's modulus for compatibilized systems was about 40% lower than that for systems without compatibilizer, attributed to the rubbery nature of EGMA‐VA. With the inclusion of NIR into HDPE to form PET/N‐HDPE composites with or without EGMA‐VA compatibilizer, the values of reflectance increased to a great degree. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40830.  相似文献   

11.
The relaxation processes of orientation and disorientation of melts of high‐density polyethylene (HDPE) and polyamide‐6 (PA6) blends compatibilized with a compatibilizer precursor (CP) of HDPE‐grafted maleic anhydride (HDPE‐g‐MAH) were investigated in a restricted channel using real‐time ultrasonic technique. The experimental results showed that the evolution of ultrasonic velocity of HDPE/PA6 blends during the orientation or disorientation processes could be described by the exponential equation from which the maximum orientation degree and relaxation time could be obtained. Subsequently, the effects of CP on the relaxation processes of orientation and disorientation were studied. In addition, the relations of the CP content and the morphology and viscosity were investigated by scanning electron microscope analysis and rheological tests. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Self‐reinforced polyethylene composites have proven to be promising candidate materials for a number of wear‐resistance and bioimplant applications. In this study, we investigated the effects of processing parameters on the elastic modulus of self‐reinforced high‐density polyethylene (HDPE) composites. The processing parameters investigated were the cooling rate, processing pressure, temperature, and duration. Our results showed an optimum processing temperature, pressure, and duration that were matrix‐dependent. In addition, for an HDPE matrix, the slower the composite cooling rate was, the higher the composite modulus was. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1136–1141, 2001  相似文献   

13.
A functionalized high‐density polyethylene (HDPE) with maleic anhydride (MAH) was prepared using a reactive extruding method. This copolymer was used as a compatibilizer of blends of polyamide 6 (PA6) and ultrahigh molecular weight polyethylene (UHMWPE). Morphologies were examined by a scanning electron microscope. It was found that the dimension of UHMWPE and HDPE domains in the PA6 matrix decreased dramatically, compared with that of the uncompatibilized blending system. The size of the UHMWPE domains was reduced from 35 μm (PA6/UHMWPE, 80/20) to less than 4 μm (PA6/UHMWPE/HDPE‐g‐MAH, 80/20/20). The tensile strength and Izod impact strength of PA6/UHMWPE/HDPE‐g‐MAH (80/20/20) were 1.5 and 1.6 times as high as those of PA6/UHMWPE (80/20), respectively. This behavior could be attributed to chemical reactions between the anhydride groups of HDPE‐g‐MAH and the terminal amino groups of PA6 in PA6/UHMWPE/HDPE‐g‐MAH blends. Thermal analysis was performed to confirm that the above chemical reactions took place during the blending process. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 232–238, 2000  相似文献   

14.
In this work, high‐density polyethylene (HDPE)‐based nanocomposites having different concentrations of Sepiolite (1–10 wt %) and compatibilizer, that is, PE‐graft‐maleic anhydride (PE‐g‐MA) of varying molecular weight and maleic anhydride content were prepared by melt compounding. The influence of Sepiolite amount and compatibilizer polarity and molar mass on the crystallization behavior [differential scanning calorimeter (DSC) and X‐ray diffraction (XRD)], rheological properties (oscillatory rheometer) and dimensional stability [dynamic mechanical analyzer (DMA) and heat deflection temperature (HDT)] of the nanocomposites was investigated. It was found that Sepiolite did not affect the crystallization behavior of HDPE. The rheological results show that the incorporation of Sepiolite into HDPE matrix up to 10 wt % increases the complex viscosity of polymer. Storage modulus and loss modulus both in oscillatory rheometry and in DMA were highest for nanocomposite prepared using 10 wt % Sepiolite owing to the improved mechanical restrain by the dispersed phase. In the presence of compatibilizer, the values of storage modulus and loss modulus were lower as compared to uncompatibilized nanocomposites at same loading of Sepiolite. The reduction in modulus is more pronounced in composites prepared using compatibilizer of lower molar mass as compared to those prepared using higher molar mass compatibilizer. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45197.  相似文献   

15.
Uncompatibilized and compatibilized blends of poly(ethylene terephthalate) (PET) and high‐density polyethylene (HDPE) (50:50 PET/HDPE) have been prepared and characterized. A commercial grade of ethylene/methacrylic acid copolymer was used as compatibilizing agent and added to the blends in two different proportions, 1% and 7%. Compounded blends were processed following three different procedures: compression molding, extrusion, and extrusion followed by annealing. In every case, there is evidence that suggests that HDPE constitutes the matrix and PET is the dispersed phase. The PET phase shape was related to the processing procedure of the blends. PET adopted a globular morphology in the compression molded samples but it took the form of microfibers (microfibrillar‐like reinforced composites) in extruded samples, which were flattened during the postextrusion annealing process. According to the results obtained in tensile and fracture tests, extruded blends having 7% of ethylene/methacrylic acid copolymer appeared as the optimum combination of processing method and compatibilizer content. POLYM. ENG. Sci., 45:354–363, 2005. © 2005 Society of Plastics Engineers  相似文献   

16.
A simple approach was applied to probe into the situation of interfacial adhesion in the compatibilized ternary polymer blends with core/shell morphology. The performance of compatibilization was discussed in terms of thermal, rheological, and mechanical properties analyses for blends prepared through different mixing strategies for which maleic anhydride‐grafted high‐density polyethylene (HDPE‐g‐MAH) could be localized at the interface of HDPE/poly(ethylene‐co‐vinyl alcohol) copolymer (EVOH) or HDPE/polyamide 6 (PA‐6) in their ternary blends. Two mixing strategies, one simultaneously (one‐step or selective) and two sequentially (two‐step or dictated), were performed, compared, and discussed. It was found that mixing policy (dictated or selective) significantly changes the interfacial adhesion, as signaled by variations in rheological and thermal properties. In the case of mechanical properties, facilitation of stress transfer across the matrix/shell/core interfaces was detected by calculation of semi‐experimental models' coefficients. It was found that one‐step mixing or selective localization of HDPE‐g‐MAH helps in accumulation of more compatibilizer molecules at the interface HDPE/EVOH or EVOH/PA‐6. By contrast, addition of compatibilizer to minor phase (masterbatch of EVOH and PA‐6) or to HDPE matrix alone in case of two‐step blending causes imperfect stress transfer. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45503.  相似文献   

17.
This study is aimed at utilizing nutraceutical industrial waste and reducing carbon footprints of plastics. Eco‐friendly “green composites” of high density polyethylene (HDPE) were fabricated using coleus spent (CS)—a nutraceutical industrial waste as reinforcing filler and maleic anhydride‐graft‐polyethylene (MA‐g‐PE) as compatibilizer. Composites were fabricated with 5, 10, 15, and 20% (w/w) of CS by extrusion method. The fabricated HDPE/CS composites were evaluated for mechanical and thermal behavior. A slight improvement of about 5% in tensile strength and marked improvement of about 25% in tensile modulus for 20 wt % CS filled HDPE composites was noticed. The effect of CS content on rheological behavior was also studied. Thermal characteristics were performed using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA thermogram indicated increased thermal stability of CS‐filled composites. From TGA curves the thermal degradation kinetic parameters of the composites have been calculated using Broido's method. The enthalpy of melting (ΔHm) obtained from DSC curves was reduced with increase in CS content in HDPE matrix, due to decrease in HDPE content in composite systems. An increase in CS loading increased the water absorption behavior of the composites slightly. Morphological behavior of cryo‐fractured composites has been studied using scanning electron microscopy. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
Polymer blending is a very important polymer processing operation. It aims at preparing new polymer materials by blending existing polymers without the need of creating new molecules. For immiscible polymer blends, it is always challenging, if not impossible, to choose an appropriate compatibilizer and assess its compatibilizing efficiency under pilot or industrial polymer‐blending conditions. The concept of compatibilizer‐tracer developed in this work is able to take this challenge. This is shown using polystyrene (PS)/polyamide 6 (PA6) blends and fluorescent labeled graft copolymers of PS and PA6 as compatibilizer‐tracer. Transient experiments allow using very small amounts of compatibilizer‐tracer to obtain emulsification curves, namely, the evolution of the dispersed phase domain size as a function of the compatibilizer‐tracer concentration. Other potential applications of this concept are discussed and its limitations are investigated. © 2010 American Institute of Chemical Engineers AIChE J, 58: 1921–1928, 2012  相似文献   

19.
HDPE/PA 6/有机蒙脱土复合体系的结构及性能   总被引:1,自引:1,他引:0  
采用熔融共混法制备高密度聚乙烯(HDPE)/聚酰胺(PA)6/有机蒙脱土(OMMT)多元复合材料,借助X射线衍射仪、扫描电子显微镜、透射电子显微镜等分析了OMMT对HDPE/PA 6体系结构、性能的影响及作用机理。加入的少量OMMT以剥离形态分散在基体中,能起到较好的增容作用,并且改善了材料的冲击性能。但OMMT的加入使材料的熔体流动速率降低,剪切黏度增大。  相似文献   

20.
A 58% (by weight) long glass fiber reinforced (LGF)‐HDPE master batch was blended with a typical blow molding HDPE grade. HDPE composites having between 5% and 20% (by weight) long fiber content were extruded at different processing conditions (extrusion speed, die gap, hang time). The parison swell (diameter and thickness) decreased with increasing fiber content. Although the HDPE exhibited significant shear rate dependence, the LGF/HDPE composites were shear rate insensitive. Both the diameter and weight swell results also indicated very different sagging behavior. The LGF/HDPE parisons did sag as a solid‐body (equal speed at different axial locations) governed by the orientation caused by the flow in the die. Samples taken from blown bottles showed that fiber lengths decreased to 1‐3 mm, from the original 11 mm fiber length fed to the extruder. No significant difference in fiber length distribution was found when samples for different regions of the bottle were analyzed. SEM micrographs corroborate the absence of fiber segregation and clustering or the occurrence of fiber bundles (homogeneous spatial fiber distribution) as well as a preferential fiber orientation with the direction of flow. The blowing step did not change the orientation of the fibers. Five‐percent (5%) and 10% LGF/HDPE composites could be blown with very slight variations to the neat HDPE inflation conditions. However, 20% LGF/HDPE composites could not be consistently inflated. Problems related to blowouts and incomplete weldlines were the major source of problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号