首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Artificial light‐harvesting antenna materials as potential mimics for photosynthetic systems have attracted intense attention recently. Herein, a new modular approach to construct light‐harvesting material, which involves the self‐assembly of coordination polymer nanoparticles (CPNs) at room temperature, is presented. Fluorescence resonance energy transfer (FRET) occurs between donor and acceptor molecules encapsulated in the CPNs, and the emission signal of acceptor is amplified significantly. To the best of our knowledge, this is the first example of artificial light‐harvesting material generated from biomolecule‐based coordination polymer nanoparticles. The modularity of the material makes it convenient to manipulate the system by changing the composite of CPNs and the type and amount of dyes confined, implying it is a general strategy. The material functions not only in fluid medium, but also in the form of solid state, which extends its application areas greatly. Furthermore, photocurrent generation can be realized by the dye‐encapsulated CPNs system upon irradiation with visible light, implying the potential usefulness in light‐energy conversion and photoelectronic applications. Besides, the creation of FRET system provides a platform to mimic dual‐channel logic gate at nanoscale level, which is beneficial to the construction of integrated logic devices with multiple functions.  相似文献   

2.
Natural light‐harvesting complexes are operated through the well‐designed self‐assembly of pigments with large protein complexes in a thylakoid lipid bilayer. However, a long‐range, directed transfer of excitation energy has not been achieved in artificial systems because the nanoscale arrangement of chromophores into stable micrometer‐scale structures is highly challenging. Here the multiscale assembly of chromophores for excited energy transfer through the arrangement of chromophores on nanoscale DNA templates followed by their incorporation into larger multilamellar lipid structures is reported. Single‐strand 10 nucleotide DNA molecules containing a terminal residue linked with three different chromophores are hybridized with their complementary 30 nucleotide matrix DNA strand. Due to the short DNA sequences, the energy transfer of the DNA‐templated chromophore arrays is limited at 4 °C. However, the incorporation of DNA‐templated chromophores into lipid‐DNA complexes dramatically increases both of the efficiencies and antenna effects of the single and two‐step energy transfers at room temperature through the structural stabilization and the secondary assembly of DNA between the interstitial spaces of multilamellar lipid structures. The findings suggest that the supramolecular alignment of DNA‐templated chromophores, which has never been explored previously, can be a very promising route toward directed, long‐range light harvesting.  相似文献   

3.
Molecular assembly offers a bottom‐up way to construct biomimetic architectures with unique structures and properties. Although artificial photophosphorylation systems have long been developed, their microstructures have yet to achieve the sophisticated order and hierarchy of natural organisms. Herein, by utilizing principles in the natural plant leaves, it is shown that a biomimetic system with hierarchically ordered and compartmentalized structures, combining photosystem II (PSII) and adenosine triphosphate (ATP) synthase, can be obtained through template‐directed layer‐by‐layer assembly. Under light illumination, PSII in such a highly ordered light‐harvesting array, splits water to produce protons and electrons. Furthermore, a remarkable proton gradient is created across the covering ATP synthase‐reconstituted lipid membrane. As a consequence, highly efficient photophosphorylation is achieved. Outstandingly, the rate of ATP production in this hierarchical light‐harvesting architecture is enhanced 14 times, compared to that in the nature. This study paves a new way to assemble bioinspired systems with enhanced solar‐to‐chemical energy conversion efficiency.  相似文献   

4.
Grafting six fluorene units to a benzene ring generates a new highly twisted core of hexakis(fluoren‐2‐yl)benzene. Based on the new core, six‐arm star‐shaped oligofluorenes from the first generation T1 to third generation T3 are constructed. Their thermal, photophysical, and electrochemical properties are studied, and the relationship between the structures and properties is discussed. Simple double‐layer electroluminescence (EL) devices using T1–T3 as non‐doped solution‐processed emitters display deep‐blue emissions with Commission Internationale de l'Eclairage (CIE) coordinates of (0.17, 0.08) for T1 , (0.16, 0.08) for T2 , and (0.16, 0.07) for T3 . These devices exhibit excellent performance, with maximum current efficiency of up to 5.4 cd A?1, and maximum external quantum efficiency of up to 6.8%, which is the highest efficiency for non‐doped solution‐processed deep‐blue organic light‐emitting diodes (OLEDs) based on starburst oligofluorenes, and is even comparable with other solution‐processed deep‐blue fluorescent OLEDs. Furthermore, T2‐ and T3‐ based devices show striking blue EL color stability independent of driving voltage. In addition, using T0–T3 as hole‐transporting materials, the devices of indium tin oxide (ITO)/poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonic acid) (PEDOT:PSS)/ T0–T3 /tris(8‐hydroxyquinolinato)aluminium (Alq3)/LiF/Al achieve maximum current efficiencies of 5.51–6.62 cd A?1, which are among the highest for hole‐transporting materials in identical device structure.  相似文献   

5.
A dandelion‐like supramolecular polymer (DSP) with a “sphere‐star‐parachute” topological structure consisting of a spherical hyperbranched core and many parachute‐like arms is constructed by the non‐covalent host–guest coupling between a cyclodextrin‐endcapped hyperbranched multi‐arm copolymer (host) and many functionalized adamantanes with each having three alkyl chain arms (guests). The obtained DSPs can further self‐assemble into nanotubes in water in a hierarchical way from vesicles to nanotubes through sequential vesicle aggregation and fusion steps. The nanotubes have a bilayer structure consisting of multiple “hydrophobic‐hyperbranched‐hydrophilic” layers. Such a structure is very useful for constructing a chlorosome‐like artificial aqueous light‐harvesting system, as demonstrated here, via the incorporation of hydrophobic 4‐(2‐hydroxyethylamino)‐7‐nitro‐2,1,3‐benzoxadiazole as donors inside the hyperbranched cores of the nanotubes and the hydrophilic Rhodamine B as the acceptors immobilized on the nanotube surfaces. This as‐prepared nanotube light harvesting system demonstrates unexpectedly high energy transfer efficiency (above 90%) in water. This extends supramolecular polymers with more complex topological structure, special self‐assembly behavior, and new functionality.  相似文献   

6.
The photoluminescence (PL) efficiency of emitters is a key parameter to accomplish high electroluminescent performance in phosphorescent organic light‐emitting diodes (PhOLEDs). With the aim of enhancing the PL efficiency, this study designs deep‐blue emitting heteroleptic Ir(III) complexes (tBuCN‐FIrpic, tBuCN‐FIrpic‐OXD, and tBuCN‐FIrpic‐mCP) for solution‐processed PhOLEDs by covalently attaching the light‐harvesting functional moieties (mCP‐Me or OXD‐Me) to the control Ir(III) complex, tBuCN‐FIrpic. These Ir(III) complexes show similar deep‐blue emission peaks around 453, 480 nm (298 K) and 447, 477 nm (77 K) in chloroform. tBuCN‐FIrpic‐mCP demonstrates higher light‐harvesting efficiency (142%) than tBuCN‐FIrpic‐OXD (112%), relative to that of tBuCN‐FIrpic (100%), due to an efficient intramolecular energy transfer from the mCP group to the Ir(III) complex. Accordingly, the monochromatic PhOLEDs of tBuCN‐FIrpic‐mCP show higher external quantum efficiency (EQE) of 18.2% with one of the best blue coordinates (0.14, 0.18) in solution‐processing technology. Additionally, the two‐component (deep‐blue:yellow‐orange), single emitting layer, white PhOLED of tBuCN‐FIrpic‐mCP shows a maximum EQE of 20.6% and superior color quality (color rendering index (CRI) = 78, Commission Internationale de L'Eclairage (CIE) coordinates of (0.353, 0.352)) compared with the control device containing sky‐blue:yellow‐orange emitters (CRI = 60, CIE coordinates of (0.293, 0.395)) due to the good spectral coverage by the deep‐blue emitter.  相似文献   

7.
An improved synthetic approach was developed for the synthesis of 1,4‐bis[9′,9′‐bis(6″‐(N,N,N‐trimethylammonium)‐hexyl)‐fluoren‐2′‐yl]benzene tetrabromide ( 1a ), 1,4‐bis[9′,9′;9″,9″‐tetra(6″′‐(N,N,N‐trimethylammonium)‐hexyl)‐7′,2″‐bisfluoren‐2′‐yl] benzene octabromide ( 1b ) and 1,4‐bis[9′,9′;9″,9″;9″′,9″′‐hexakis(6″″‐(N,N,N‐trimethylammonium)‐hexyl)‐7′,2″,7″,2″′‐trifluoren‐2′‐yl] benzene dodecabromide ( 1c ). These molecules provide a size‐specific series of water‐soluble oligofluorene molecules with increasing numbers of repeat units to model the interactions between cationic conjugated polymers and DNA. Fluorescence quenching and energy‐transfer measurements were performed with 1a – c and single‐stranded (ss) DNA and double‐stranded (ds) DNA, with and without fluorescein (Fl). These studies show that, on a per‐negative‐charge basis, ssDNA quenches the emission of 1a – c more effectively than dsDNA. Furthermore, we show that the energy‐transfer ratios dsDNA–Fl/ssDNA–Fl are dependent on the number of repeat units in 1a – c .  相似文献   

8.
Novel deep‐blue‐light‐emitting diphenylamino and triphenylamino end‐capped oligofluorenes were synthesized by double palladium‐catalyzed Suzuki cross‐coupling of dibromo‐oligofluorene with the corresponding boronic acid as a key step. These oligofluorenes exhibit deep‐blue emission (λemmax = 429–432 nm), low and reversible electrochemical oxidation (highest occupied molecular orbital = 5.15–5.20 eV), high fluorescence quantum yield (ΦFL = 0.61–0.93), and good thermal properties (glass‐transition temperature, Tg = 99–195 °C and decomposition temperature, Tdec > 450 °C). Remarkably, saturated deep‐blue organic light‐emitting diodes, made from these oligofluorenes as dopant emitters, have been achieved with excellent performance and maximum efficiencies up to 2.9 cd A–1 at 2 mA cm–2 (external quantum efficiency of 4.1 %) and with Commission Internationale de l'Éclairage (x,y) coordinates of (0.152,0.08), which is very close to the National Television System Committee standard blue.  相似文献   

9.
Based on the results of first‐principles calculations of the electronic properties of blue light‐emitting materials, the molecular structures of oligofluorenes are optimized by incorporating electron‐withdrawing groups into the molecules to balance hole and electron injection and transport for organic light‐emitting diodes (OLEDs). The result is a remarkable improvement in the maximum external quantum efficiency (EQE) of the undoped device from 2.0% to 4.99%. Further optimization of the device configurations and processing procedures, e.g., by changing the thickness of the emitting layer and through thermal annealing treatments, leads to a very high maximum EQE of 7.40% for the undoped sky‐blue device. Finally, by doping the emitter in a suitable host material, 4,4’‐bis(carbazol‐9‐yl)biphenyl (CBP), at the optimal concentration of 6%, pure blue emission with extremely high maximum EQE of 9.40% and Commission Internationale de l’Eclairage (CIE) coordinates of (0.147, 0.139) is achieved.  相似文献   

10.
The development of nanotheranostic agents that integrate diagnosis and therapy for effective personalized precision medicine has obtained tremendous attention in the past few decades. In this report, biocompatible electron donor–acceptor conjugated semiconducting polymer nanoparticles (PPor‐PEG NPs) with light‐harvesting unit is prepared and developed for highly effective photoacoustic imaging guided photothermal therapy. To the best of our knowledge, it is the first time that the concept of light‐harvesting unit is exploited for enhancing the photoacoustic signal and photothermal energy conversion in polymer‐based theranostic agent. Combined with additional merits including donor–acceptor pair to favor electron transfer and fluorescence quenching effect after NP formation, the photothermal conversion efficiency of the PPor‐PEG NPs is determined to be 62.3%, which is the highest value among reported polymer NPs. Moreover, the as‐prepared PPor‐PEG NP not only exhibits a remarkable cell‐killing ability but also achieves 100% tumor elimination, demonstrating its excellent photothermal therapeutic efficacy. Finally, the as‐prepared water‐dispersible PPor‐PEG NPs show good biocompatibility and biosafety, making them a promising candidate for future clinical applications in cancer theranostics.  相似文献   

11.
In this study, nanoparticles (NPs) of various types and sizes are arranged to enhance both the omnidirectional light harvesting of solar cells and the light extraction of light emitting diodes (LEDs). A graded‐refractive‐index NP stack can minimize reflectance, not only over a broad range of wavelengths but also at different incident angles; the photocurrent of silicon‐based solar cells an also be significantly improved omnidirectionally. In addition, the optical gradient of an NP stack can also enhance the light‐extraction efficiency of LEDs, due to both the graded refractive index and the moderate surface roughness. Large particles having sizes on the same order of the wavelength of the incident light roughen the LED surfaces further and extract light from beyond the critical angle, as supported by three‐dimensional finite‐difference time‐domain simulations. Using this approach, the photoluminescence intensity can be increased by up to sevenfold. The developed technique: arranging sequences of different NPs in graded‐refractive‐index stacks, and considering their ability to scatter light due to their sizes and optical constants, may also significantly improve the performance of various optoelectronic devices.  相似文献   

12.
White organic light‐emitting diodes (OLEDs) are highly efficient large‐area light sources that may play an important role in solving the global energy crisis, while also opening novel design possibilities in general lighting applications. Usually, highly efficient white OLEDs are designed by combining three phosphorescent emitters for the colors blue, green, and red. However, this procedure is not ideal as it is difficult to find sufficiently stable blue phosphorescent emitters. Here, a novel approach to meet the demanding power efficiency and device stability requirements is discussed: a triplet harvesting concept for hybrid white OLED, which combines a blue fluorophor with red and green phosphors and is capable of reaching an internal quantum efficiency of 100% if a suitable blue emitter with high‐lying triplet transition is used is introduced. Additionally, this concept paves the way towards an extremely simple white OLED design, using only a single emitter layer.  相似文献   

13.
To achieve high‐performance perovskite solar cells, especially with mesoscopic cell structure, the design of the electron transport layer (ETL) is of paramount importance. Highly branched anatase TiO2 nanowires (ATNWs) with varied orientation are grown via a facile one‐step hydrothermal process on a transparent conducting oxide substrate. These films show good coverage with optimization obtained by controlling the hydrothermal reaction time. A homogeneous methyl­ammonium lead iodide (CH3NH3PbI3) perovskite thin film is deposited onto these ATNW films forming a bilayer architecture comprising of a CH3NH3PbI3 sensitized ATNW bottom layer and a CH3NH3PbI3 capping layer. The formation, grain size, and uniformity of the perovskite crystals strongly depend on the degree of surface coverage and the thickness of the ATNW film. Solar cells constructed using the optimized ATNW thin films (220 nm in thickness) yield power conversion efficiencies up to 14.2% with a short‐circuit photocurrent density of 20.32 mA cm?2, an open‐circuit photovoltage of 993 mV, and a fill factor of 0.70. The dendritic ETL and additional perovskite capping layer efficiently capture light and thus exhibit a superior light harvesting efficiency. The ATNW film is an effective hole‐blocking layer and efficient electron transport medium for excellent charge separation and collection within the cells.  相似文献   

14.
A novel system of light‐harvesting supramolecular block copolymers (SBCPs) in water is demonstrated. To realize cucurbit[8]uril (CB[8])‐based SBCPs generating artificial light‐harvesting in water, finely color‐tuned supramolecular homopolymers (SHPs) comprising CB[8] host and different cyanostilbene guests (named as B , G , Y , and R ) emitting blue, green, yellow, and red fluorescence are first synthesized and characterized, respectively. Light‐harvesting SBCPs with mixed guest emitters are then simply produced by mixing blue and red‐emitting SHPs according to the dynamic host–guest exchange interaction. The light‐harvesting SBCPs show highly efficient energy transfer from B (donor D) to R (acceptor A) attributed to the D/A proximity and parallel orientation of their transition dipoles secured in the block copolymer structure. It is comprehensively shown that cyanostilbene/CB[8]‐based fluorescent SBCPs represent a novel and fascinating class of eco‐friendly artificial light‐harvesting system.  相似文献   

15.
Metal‐organic vesicular and toroid nanostructures of Zn(OPE)·2H2O are achieved by coordination‐directed self‐assembly of oligo‐phenyleneethynylenedicarboxylic acid (OPEA) as a linker with Zn(OAc)2 by controlling the reaction parameters. Self‐assembled nanostructures are characterized by powder X‐ray diffraction, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and adsorption study. The amphiphilic nature of the coordination‐polymer with long alkyl chains renders different soft vesicular and toroidal nanostructures. The permanent porosity of the framework is established by gas adsorption study. Highly luminescent 3D porous framework is exploited for Froster's resonance energy transfer (FRET) by encapsulation of a suitable cationic dye ( DSMP ) which shows efficient funneling of excitation energy. These results demonstrate the dynamic and soft nature of the MOF, resulting in unprecedented vesicular and toroidal nanostructures with efficient light harvesting applications.  相似文献   

16.
This paper reports the first example of the fabrication of KNO3, K2CO3, CuSO4, NaOH, and mixed‐inorganic‐salt (KNO3 and KOH) patterns using a transfer‐printing (TP) technique. The transfer quality is found to be related to the concentration of the salt solutions. By varying the immersion time, it is possible to control the heights of the raised features of the transfer‐printed salts from the nanoscale to the submicrometer scale. Utilizing these inorganic salts as water‐soluble masks for microfabrication is demonstrated using patterned NaOH films. The use of water as a developer solvent demonstrates the potential utility of the patterning of inorganic salts as a low‐cost, simple, and, more importantly, environmentally friendly route towards accurate patterning of different materials.  相似文献   

17.
Light‐emitting electrochemical cells (LECs) are solid‐state lighting devices that convert electric current to light within electroluminescent organic semiconductors, and these devices have recently attracted significant attention. Introduced in 1995, LECs are considered a great breakthrough in the field of light‐emitting devices for their applications in scalable and adaptable fabrication processes aimed at producing cost‐efficient devices. Since then, LECs have evolved through the discovery of new suitable emitters, understanding the working mechanism of devices, and the development of various fabrication methods. LECs are best known for their simple architecture and easy, low‐cost fabrication techniques. The key feature of their fabrication is the use of air stable electrodes and a single active layer consisting of mobile ions that enable efficient charge injection and transport processes within LEC devices. More importantly, LEC devices can be operated at low voltages with high efficiencies, contributing to their widespread interest. This review provides a general overview of the development of LECs and discusses how small molecules can be utilized in LEC applications by overcoming the use of traditional lighting materials like polymers and ionic transition metal complexes. The achievements of each study concerning small molecule LECs are discussed.  相似文献   

18.
We report the design and synthesis of three alcohol‐soluble neutral conjugated polymers, poly[9,9‐bis(2‐(2‐(2‐diethanolaminoethoxy) ethoxy)ethyl)fluorene] (PF‐OH), poly[9,9‐bis(2‐(2‐(2‐diethanol‐aminoethoxy)ethoxy)ethyl)fluorene‐alt‐4,4′‐phenylether] (PFPE‐OH) and poly[9,9‐bis(2‐(2‐(2‐diethanolaminoethoxy) ethoxy)ethyl)fluorene‐alt‐benzothiadizole] (PFBT‐OH) with different conjugation length and electron affinity as highly efficient electron injecting and transporting materials for polymer light‐emitting diodes (PLEDs). The unique solubility of these polymers in polar solvents renders them as good candidates for multilayer solution processed PLEDs. Both the fluorescent and phosphorescent PLEDs based on these polymers as electron injecting/transporting layer (ETL) were fabricated. It is interesting to find that electron‐deficient polymer (PFBT‐OH) shows very poor electron‐injecting ability compared to polymers with electron‐rich main chain (PF‐OH and PFPE‐OH). This phenomenon is quite different from that obtained from conventional electron‐injecting materials. Moreover, when these polymers were used in the phosphorescent PLEDs, the performance of the devices is highly dependent on the processing conditions of these polymers. The devices with ETL processed from water/methanol mixed solvent showed much better device performance than the devices processed with methanol as solvent. It was found that the erosion of the phosphorescent emission layer could be greatly suppressed by using water/methanol mixed solvent for processing the polymer ETL. The electronic properties of the ETL could also be influenced by the processing conditions. This offers a new avenue to improve the performance of phosphorescent PLEDs through manipulating the processing conditions of these conjugated polymer ETLs.  相似文献   

19.
Phosphorescent organic light emitting diodes (PHOLEDs) have undergone tremendous growth over the past two decades. Indeed, they are already prevalent in the form of mobile displays, and are expected to be used in large‐area flat panels recently. To become a viable technology for next generation solid‐state light source however, PHOLEDs face the challenge of achieving concurrently a high color rendering index (CRI) and a high efficiency at high luminance. To improve the CRI of a standard three color white PHOLED, one can use a greenish‐yellow emitter to replace the green emitter such that the gap in emission wavelength between standard green and red emitters is eliminated. However, there are relatively few studies on greenish‐yellow emitters for PHOLEDs, and as a result, the performance of greenish‐yellow PHOLEDs is significantly inferior to those emitting in the three primary colors, which are driven strongly by the display industry. Herein, a newly synthesized greenish‐yellow emitter is synthesized and a novel device concept is introduced featuring interzone exciton transfer to considerably enhance the device efficiency. In particular, high external quantum efficiencies (current efficiencies) of 21.5% (77.4 cd/A) and 20.2% (72.8 cd/A) at a luminance of 1000 cd/m2 and 5000 cd/m2, respectively, have been achieved. These efficiencies are the highest reported to date for greenish‐yellow emitting PHOLEDs. A model for this unique design is also proposed. This design could potentially be applied to enhance the efficiency of even longer wavelength yellow and red emitters, thereby paving the way for a new avenue of tandem white PHOLEDs for solid‐state lighting.  相似文献   

20.
A series of conjugated polymers using naphtho[1,2‐c:5,6‐c]bis[1,2,5]thiadiazole and benzodithiophene alternating backbone is synthesized to investigate the effect of side chain substitution on conjugated donor–acceptor polymer on electronic, morphological, and photovoltaic properties. It is found that light absorption and frontier energy levels of the resultant polymers are strongly affected by the side chains. The thin film morphology, crystal structure, crystallinity, and orientation also depend on the side chains; the side chain type affects more in the π–π stacking direction, while the side chain density plays a significant role in the lamellar packing direction. The thickness of the active layer also influences the performance of the solar cells with some materials showing enhanced performance with thicker active layers. The best solar cell device in this study has power conversion efficiencies of 8.14%, among the highest in materials of similar structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号