首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZrB2–SiC composites were prepared by hot pressing with different sources of SiC to study the effect of SiC with different morphology on densification, microstructure, phase composition and mechanical properties like hardness, fracture toughness and tribological properties (namely, scratch resistance, wear parameters) and thermal behaviour of the composites. Three different ZrB2–SiC composites, i.e. ZrB2–SiCP (polycarbosilane derived SiC), ZrB2–SiCC (SiC from CUMI, India) and ZrB2–SiCH (SiC from H. C. Starck, Germany), were studied. It is found that ZrB2–SiCC composite shows highest hardness (19·13 GPa) and fracture toughness (5·30 MPa m1/2 at 1 kgf load) in comparison with other composites. Interconnected network, better contiguity between grains of ZrB2–SiC composites and impurity content in starting powders can play significant roles for achieving high mechanical, tribological and thermal properties of the composites. Coefficient of friction and wear parameters of all ZrB2–SiC composites are very low, and thermal conductivity of ZrB2–SiC composites varied from 52·71 to 65·53 W (m K)?1 (ZrB2–SiCP), 54·30 to 71·55 W (m K)?1 (ZrB2–SiCC) and 64·25 to 88·02 W (m K)?1 (ZrB2–SiCH), respectively and also calculate the interfacial resistance of all the composites.  相似文献   

2.
Square-shaped monolithic B4C and B4C-ZrB2 composites were produced by spark plasma sintering (SPS) method to investigate the effect of 5, 10, 15 vol% ZrB2 addition on the densification, mechanical and microstructural properties of boron carbide. The relative density of B4C increased with the increasing volume fraction of ZrB2 and density differences in different regions of the sample narrowed down. Homogeneous density distribution and microstructure were accomplished with the increasing holding time from 7 to 20 min for the B4C-15 vol% ZrB2 composites, and the highest overall relative density was achieved as 99.23%. The hardness and fracture toughness of composites were enhanced with the addition of ZrB2 compared to monolithic B4C. The enhancement in fracture toughness was observed due to the crack deflection, crack bridging and crack branching mechanisms. The B4C-15 vol% ZrB2 composite exhibited the combination of superior properties (hardness of 33.08 GPa, Vickers indentation fracture toughness of 3.82 MPa.m1/2).  相似文献   

3.
ZrB2/SiC composite ceramics were fabricated to improve the electrical conductive properties of SiC matrix. The debinding and sintering temperatures were determined by computation of Gibbs free energy. As a result, all the samples have the relative density above 99%, and have excellent mechanical and electrical properties. The effects of ZrB2 content on the microstructure, mechanical and electrical properties were systematically studied. With increasing ZrB2 content, as-prepared composites show great improvement in their mechanical properties. Importantly, the introduction of ZrB2 weakened varistor nonlinear characteristic of composite and reduced its resistivity. The reason is the evolution of grain boundary in conductive paths. The sharp decrease of resistivity indicates the formation of percolation paths. The percolation threshold at 1?mA?cm?2 obtained via percolation model is 10.7963?vol% (19.7098?wt%) ZrB2. This value is much less than conventional composites, because the percolation path originates from grain boundary breakdown other than continuous conductor chains.  相似文献   

4.
This paper presents a tribological investigation of Si3N4-hBN composite ceramics using synthetic lubricants. The friction and wear properties of Si3N4-hBN ceramic composites sliding against TC4 titanium alloy (Ti6Al4V) were investigated via pin-on-disc tests. An axial compressive load of 10?N was applied with a sliding speed of 0.73?m/s. Three different lubrication conditions including simulated body fluid (SBF), physiological saline (PS) and bovine serum (BS) were used. For SBF lubrication, the friction coefficients and wear rates of Si3N4-hBN/Ti6Al4V pairs were varying with the increase of hBN contents. When using 20?vol% hBN, the average friction coefficient and wear rate of Si3N4 (0.28 and 3.5?× 10?4 mm3 N?1 m?1) were as good as that of the pure Si3N4 (0.34 and 3.69?× 10?4 mm3 N?1 m?1). Meanwhile, the processability of the Si3N4 material would be improved by adding hBN. It was worth to mention that when using 30?vol% hBN, the tribological performance of bearing combination deteriorated with extensive wear from the ceramic pin. This may due to the reduction of mechanical property caused by adding hBN and the occurring of tribochemical reaction. According to the worn surface examination and characterization, the main wear mechanism was abrasive and adhesion wear. Scratch grooves were observed on the metal disc, and metallic transform layers were seen on the ceramic pin. Moreover, surface lubrication film consisting of TiO2, SiO2·nH2O, Mg(OH)2, and H3BO3 were formed on the metal disc when using SBF lubrication and 20?vol% hBN content. Among the three lubrication conditions, SBF generally led to the best tribological performance. No surface lubrication film was found during BS and PS lubrications. This may be resulted from the absence of essential ions to promote the formation of surface lubrication film (PS lubrication) and the formation of a protein barrier on the surface of the metal disc (BS lubrication).  相似文献   

5.
Room temperature static and cyclic fatigue of ZrB2-32?vol% SiC and ZrB2-45?vol% SiC particulate ceramic composites has been studied. It was established that the presence of grain bridging plays an important role in the lifetime and time dependent mechanical performance of ZrB2-SiC composites. It was also established that the cohesive strength of grain boundaries of the composites was a determining factor if grain bridging would occur during crack growth, as the grain boundaries strength would determine the pathway of the moving crack. Grain bridging was limited in ZrB2-32?vol% SiC leading to the absence of a cyclic fatigue effect, while grain bridging indeed occurred in ZrB2-45?vol%SiC contributing to a cyclic fatigue effect which limits the lifetime of the composite. Such differences were responsible for the occurrence of R-curve behavior in ZrB2-SiC ceramic composites.  相似文献   

6.
A 2024Al metal matrix composite with 10?vol% negative expansion ceramic ZrMgMo3O12 was fabricated by vacuum hot pressing, and the influence of sintering temperature on the microstructure and thermal expansion coefficient (CTE) of alloys was investigated. Experimental results showed that all ZrMgMo3O12p/2024Al composites sintered at 500–530?°C had a similar reticular structure and exhibited different linear expansion coefficients at 40–150?°C and 150–300?°C. The addition of 10?vol% ZrMgMo3O12 decreased the CTEs of 2024Al by ~ 16% at 40–150?°C and by ~ 7% at 150–300?°C. This addition also increased the hardness of 2024Al by ~ 23%. The density of the composites and the content of Al2Cu in ZrMgMo3O12p/2024Al increased as the sintering temperature increased. The CTEs of the composites decreased, whereas hardness increased. Thermal cycling from 40?°C to 300?°C caused the CTEs of the composites to decrease gradually and reach a stable value after seven cycles. The lowest CTEs of 15.4?×?10?6 °C?1 at 40–150?°C and 20.1?×?10?6 °C?1 at 150–300?°C were obtained after 10 thermal cycles and were reduced by ~ 32% and ~ 17%, respectively, compared with the CTE of the 2024Al. Among the current reinforcements, ZrMgMo3O12 negative expansion ceramics showed the highest efficiency to decrease the CTE of Al matrix composites.  相似文献   

7.
《Ceramics International》2019,45(11):13799-13808
Almost full density (>99% theoretical density (ρth)) was achieved for ZrB2-20vol% SiC-Xwt.% Ta (X = 2,5, 5 and 10) composites after Spark Plasma Sintering (SPS) (Temperature: 1900 °C, Pressure: 50 MPa; Time: 3 min). The microstructure of ZrB2-based composites exhibited core-rim structure and it consists of major crystalline phases (ZrB2 core, (Zr, Ta)B2 rim, SiC), minor amounts of ZrO2 and (Zr, Ta)C solid solution phases. Both the specific weight (from 22.91 to 18.77 mg/cm2) and oxide layer thickness (401–195 μm) of ZrB2-20vol% SiC composites decreased with increasing addition of Ta after the isothermal oxidation at 1500 °C for 10 h in air. The cross-sectional microstructure of oxidized samples displayed presence of a stack of three distinctive layers, which includes thick dense SiO2 top layer, SiC depleted intermediate layer and unreacted bulk. The present work clearly demonstrated the advantage of tantalum addition in improving the oxidation resistance of ZrB2-20vol% SiC.  相似文献   

8.
B4C-TiB2 composites were contaminated with WC to study the effect on densification, microstructure and properties. WC was introduced through a mild or a high energy milling with WC-6?wt%Co spheres or directly as sintering aid to 50?vol% B4C / 50?vol%TiB2 mixtures. High energy milling was very effective in improving the densification thanks to the synergistic action of WC impurities, acting as sintering aid, and size reduction of the starting TiB2-B4C powders. As a result, the sintering temperature necessary for full densification decreased to 1860?°C and both strength and hardness benefited from the microstructure refinement, 860?±?40 MPa and 28.5?±?1.4?GPa respectively. High energy milling was then adopted for producing 75?vol% B4C/25?vol% TiB2 and 25?vol% B4C/ 75vol%TiB2 mixtures. The B4C-rich composition showed the highest hardness, 32.2?±?1.8?GPa, whilst the TiB2-rich composition showed the highest value of toughness, 5.1?±?0.1?MPa?m0.5.  相似文献   

9.
《Ceramics International》2020,46(12):20226-20235
The present work investigates the effect of (0–10 wt%) ZrB2 reinforcement on densification, mechanical, tribological and electrical properties of Cu. The consolidation of Cu–ZrB2 samples was carried out using a hot press (temperature: 500 °C, pressure: 500 MPa, time: 30 min, vacuum pressure: 1.3 × 10-2 mbar). The bulk density of the hot-pressed Cu composites decreased from 8.84 g/cc to 8.16 g/cc and the relative density of samples lowered from 98.6% to 92.1% with the addition of ZrB2. The incorporation of hard ZrB2 (up to 10 wt%) improved the hardness of Cu (1.32–2.55 GPa). However, the yield strength and compressive strength of Cu composites increased up to 5 wt% ZrB2, and further addition of ZrB2 lowered its strength. The yield strength of Cu samples varied from 602 to 672 MPa and the compressive strength between ~834 and 971 MPa. On the other hand, the coefficient of friction (COF) (from 0.49 to 0.18) and wear rate (from 49.3 × 10-3 mm3/Nm to 9.1 × 10-3 mm3/Nm) of Cu–ZrB2 samples considerably decreased with the addition of ZrB2. Significantly low wear was observed with Cu-10 wt% ZrB2 (Cu-10Z) samples, which is 5.41 times less than pure Cu. As far as the wear mechanisms are concerned, in pure Cu, continuous chips (wear debris) were formed during sliding wear by plowing. Whereas the major amount of material loss was occurred due to the plowing mechanism with discontinuous and short chip formation for Cu–ZrB2 composites. The electrical conductivity of Cu–ZrB2 samples decreased from 75.7% IACS to 44.1% IACS. In particular, Cu with ZrB2 (up to 3 wt%) could retain the conductivity of 66.8% IACS. This study reveals that the addition of ZrB2 (up to 3 wt%) is advantageous to have a good combination of properties for Cu.  相似文献   

10.
Reactive hot pressing was used to prepare Zr1?xTixB2–ZrC composites with advantageous microstructure and mechanical properties from ZrB2–TiC powders. The reaction mechanisms and the effects of different levels of TiC on the physical and mechanical properties of the resulting composite were explored in detail and compared to conventionally hot‐pressed ZrB2 and ZrB2–ZrC. Incorporation of 10 to 30 vol% TiC enabled full densification and restrained grain growth, reducing the final average grain size from 5.6 μm in pure ZrB2 to a minimum of 1.4 μm in samples with 30 vol% TiC. The flexural strengths and hardnesses of the composites sintered with TiC were consequently greater than the conventionally processed ZrB2–ZrC materials, increasing from 440 MPa and 17.4 GPa to a maximum of 670 MPa and 24.2 GPa at 10 vol% TiC. However, despite a decrease in the total average grain size, the flexural strength at higher TiC levels was limited by an increase in ZrC grain growth, which was observed to determine the flexural strength of the reaction sintered composites similar to the case of ZrB2–SiC.  相似文献   

11.
The production of particle composites by means of pressureless sintering provides a cost-effective alternative to production variants such as hot-pressing. However, minimal quantities of additives are sufficient to impede the densification of oxidic matrix components. This paper examines the sintering behaviour of alumina powder as a function of the volume fraction of ZrB2 (up to 20 vol%). A distinction can be made between two sintering ranges according to the temperature: at T⩽1700° a solid-state process applies. This process is decisively influenced by the boron oxide (B2O3) contained in the raw material ZrB2. The validity of the Lange model, which describes the influence of increasing volumes of inclusions on the densification behaviour of a crystalline matrix phase, is confirmed in this temperature range. At T>1700°C, an aluminium borate melt occurs, accelerating the sintering process substantially. As a result, the composites quickly attain matrix densities greater than 95% of the theoretical density. At higher firing temperatures the ZrB2 particles coalesce, resulting in the formation of an electrically conductive penetration structure at a content level of 20 vol%.  相似文献   

12.
《Ceramics International》2017,43(11):8411-8417
The effect of nano-sized carbon black on densification behavior, microstructure, and mechanical properties of zirconium diboride (ZrB2) – silicon carbide (SiC) ceramic was studied. A ZrB2-based ceramic matrix composite, reinforced with 20 vol% SiC and doped with 10 vol% nano-sized carbon black, was hot pressed at 1850 °C for 1 h under 20 MPa. For comparison, a monolithic ZrB2 ceramic and a ZrB2–20 vol% SiC composite were also fabricated by the same processing conditions. By adding 20 vol% SiC, the sintered density slightly improved to ~93%, compared to the relative density of ~90% of the monolithic one. However, adding 10 vol% nano-sized carbon black to ZrB2–20 vol% SiC composite meaningfully increased the sinterability, as a relatively fully dense sample was obtained (RD=~100%). The average grain size of sintered ZrB2 was significantly affected and controlled by adding carbon black together with SiC acting as effective grain growth inhibitors. The Vickers hardness, flexural strength and fracture toughness of SiC reinforced and carbon black doped composites were found to be remarkably higher than those of monolithic ZrB2 ceramic. Moreover, unreacted carbon black additives in the composite sample resulted in the activation of some toughening mechanisms such as crack deflections.  相似文献   

13.
ZrC-ZrB2-SiC composites were prepared by arc-melting in Ar atmosphere using ZrC, ZrB2 and SiC as starting materials. The ternary eutectic composition of 20ZrC-30ZrB2-50SiC (mol%) was first identified. SiC about 7?μm in length and 500?nm in diameter, ZrC about 4 μm in length and 1 μm in diameter, in rod-like microstructure, were uniformly dispersed in ZrB2 matrix of eutectic composite. The eutectic temperature of ZrC-ZrB2-SiC composite was approximately 2550?K. The Vickers Hardness and fracture toughness of eutectic composite was 23?GPa and 6.2?MPa?m1/2, respectively. The electrical conductivity decreased from 7.2?×?107 to 1.75?×?106?S?m?1 with the temperature increasing from 287 to 800?K. The thermal conductivity decreased from 85 to 61?W?K?1?m?1 with increasing temperature from 287 to 973?K.  相似文献   

14.
《应用陶瓷进展》2013,112(5):308-312
ZrB2 based composites containing 10 vol.-% carbon nanotubes (CNTs) are synthesised by spark plasma sintering at temperatures ranging from 1600 to 18008C and at an applied pressure of 25?MPa. The effects of sintering temperature on densification behaviour, microstructural evolutions and mechanical properties are presented. Results indicate that ZrB2-CNT composites fabricated at 16508C have the optimal combination of dense microstructure and properties. The fracture toughness is sensitive to the temperature change and reaches 7.2?MPa m1/2 for the CNT toughened ZrB2 ceramics, which is higher than the measured result for monolithic ZrB2 (3.3?MPa m1/2). The crack deflection and CNT pullout are the dominant toughening mechanisms.  相似文献   

15.
《Ceramics International》2016,42(3):4498-4506
The effects of processing variables on densification behavior of hot pressed ZrB2-based composites, reinforced with SiC particles and short carbon fibers (Csf), were studied. A design of experiment approach, Taguchi methodology, was used to investigate the characteristics of ZrB2–SiC–Csf composites concentrated upon the hot pressing parameters (sintering temperature, dwell time and applied pressure) as well as the composition (vol% SiC/vol% Csf). The analysis of variance recognized the sintering temperature and SiC/Csf ratio as the most effective variables on the relative density of hot pressed composites. The microstructural investigations showed that Csf can act as a sintering aid and eliminate the oxide impurities (e.g. B2O3, ZrO2 and SiO2) from the surfaces of raw materials. A fully dense composite was achieved by adding 10 vol% Csf and 20 vol% SiC to the ZrB2 matrix via hot pressing at 1850 °C for 30 min under a pressure of 16 MPa. Moreover, the in-situ formation of interfacial ZrC, which also improves the sinterability of ZrB2-based composites, was studied by energy-dispersive X-ray spectroscopy analysis and verified thermodynamically.  相似文献   

16.
Processing parameters to minimize the residual oxygen content of ZrB2 ceramics prepared by reactive hot‐pressing were selected using statistical analysis. Additions of carbon and excess boron were used to react with oxygen present in the starting ZrH2 and B powders as an impurity. A 32 full‐factorial experimental design was used to determine the carbon and excess boron contents that minimized residual oxygen content in the final ZrB2 ceramic while also minimizing formation of any impurity phases. Carbon additions were effective at reducing the oxygen content, but resulted in the formation of residual ZrC. Boron additions were also effective at removing oxygen, but to a lesser extent compared to carbon. In addition to being more effective at removing oxygen, carbon additions also improved the densification behavior, whereas boron additions inhibited densification. The stoichiometric reaction resulted in a ZrB2 ceramic with a relative density of 99%, but that contained 6.9 vol% of (Zr1?x,Mgx)O2?x as a residual phase following reactive hot‐pressing. The composition with a carbon addition to starting oxygen content having a molar ratio of 1, and a boron to zirconium molar ratio of 2.1, resulted in a 95% dense ceramic with only 0.1 vol% of residual (Zr1?x,Mgx)O2?x and trace amounts of ZrC.  相似文献   

17.
In this paper, MoSi2, MoSi2-20?vol% (ZrB2-20?vol% SiC) and MoSi2-40?vol% (ZrB2-20?vol% SiC) ceramics were prepared using pressureless sintering. The oxidation behaviors of these MoSi2-(ZrB2-SiC) ceramics were investigated at 1600?°C for different soaking time of 60, 180 and 300?min, respectively. The oxidation behaviors of the MoSi2-(ZrB2-SiC) ceramics were studied through weight change test, oxide layer thickness measurement, and microstructure analysis. Further investigation of the oxidation behaviors of the MoSi2-(ZrB2-SiC) ceramics was conducted at a higher temperature of 1800?°C for 10?min. The microstructure evolution of the ceramics was also analyzed. It was finally found that the oxidation resistance of MoSi2 was improved by adding ZrB2-SiC additives, and the MoSi2-20?vol% (ZrB2-20?vol% SiC) ceramic exhibited the optimal oxidation resistance behavior at elevated temperatures. From this study, it is believe that it can give some fundamental understanding and promote the engineering application of MoSi2-based ceramics at high temperatures.  相似文献   

18.
This research presents the influence of Al addition on microstructure and mechanical behavior of ZrB2–SiC ultra-high temperature ceramic matrix composite (UHTCMC) fabricated by spark plasma sintering (SPS). A 2.5?wt% Al-doped ZrB2–20?vol% SiC UHTCMC was produced by SPS method at 1900?°C under a pressure of 40?MPa for 7?min. The microstructural and phase analysis of the composite showed that aluminum-containing compounds were formed in-situ during the SPS as a result of chemical reactions between Al and surface oxide films of the raw materials (i.e. ZrO2 and SiO2 on the surfaces of ZrB2 and SiC particles, respectively). The Al dopant was completely consumed and converted to the intermetallic Al3Zr and Al4Si compounds as well as Al2O3 and Al2SiO5. A relative density of 99.8%, a hardness (HV5) of 21.5?GPa and a fracture toughness (indentation method) of 6.3?MPa?m1/2 were estimated for the Al-doped ZrB2–SiC composite. Crack bridging, branching, and deflection were identified as the main toughening mechanisms.  相似文献   

19.
Systematic dry sliding wear tests with monolithic ZrB2 and Al2O3 pins coupled to ZrB2, ZrB2-20 vol% SiC and Al2O3 discs were carried out in a disc-on-pin configuration. The steady state friction of ZrB2 self-mated or cross coupled with Al2O3 was about 1.1. Self-mated monolithic ZrB2 discs worn about three orders of magnitude more than self-mated Al2O3 discs. ZrB2 pin wear rate was almost double when coupled to ZrB2 or ZrB2-20 vol% SiC discs than when coupled to Al2O3 discs. The wear track of ZrB2-based materials showed an oxygen increment due to humidity-driven tribo-reaction. In all the systems, the main wear mechanisms observed were microfracture and abrasion. Numerical calculations and fracture models were employed to describe the wear mechanisms. By nanoindentation tests on worn and unworn areas, a significant lower hardness of the debris layer formed when ZrB2 materials were involved.  相似文献   

20.
Al2O3/Ti composites containing 0‐30 vol% dispersed fine Ti particles were fabricated using a hot‐press sintering method at 1500°C from mixtures of Al2O3 and TiH2 powders. During sintering, TiH2 decomposed to form metallic Ti. The effects of the Ti content on the mechanical and electrical properties of the composites were then investigated. No Ti‐Al intermetallic compounds were detected by X‐ray diffraction, and energy‐dispersive X‐ray spectroscopy indicated the presence of Al‐Ti‐O solid solution and Ti‐O phases. The composites showed enhanced densification; the measured densities were higher than the calculated theoretical values. Microstructural observation revealed homogeneously distributed fine Ti particles dispersed in the Al2O3 matrix. The Ti particle size ranged from submicrometer to a few micrometers depending on the Ti content. The fracture mode of the composites was primarily transgranular, in contrast to the intergranular fracture mode of monolithic Al2O3. Although the flexural strength was decreased with increase in Ti content, the composite containing 20 vol% Ti displayed the maximum fracture toughness of 4.3 MPa·cm1/2, which was 37% greater than that of monolithic Al2O3. The composites containing more than 15 vol% Ti exhibited drastic decreases in resistivity (~10?1 Ωcm), which were attributed to the formation of interconnected Ti networks at these Ti contents. The percolation threshold volume for electrical conduction in the present system was calculated to be 13.8 vol%. The results indicate that dispersing fine Ti particles into Al2O3 increased the fracture toughness and improved the conductivity of Al2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号