首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bamboo shoot shell fibers (BSSFs)/starch/poly(lactic acid) (PLA) ternary composites were prepared by blending BSSFs to starch/PLA matrices for the purpose of expanding BSSFs applications to enhance starch/PLA composites and creating a new low-cost biodegradable composite. The effects of BSSFs content (0–40 wt %) on the physical–mechanical properties were tested and interface compatibility and its mechanism to mechanical performance of BSSFs/starch/PLA composites were characterized by SEM-EDS, TG. The results showed that the mechanical strength, surface wettability, and water absorption of the composites continued improving when the BSSFs content increased from 0% to 20 wt %. However, mechanical modulus increased with increase in BSSFs content. The results of fracture microstructure and thermal property exhibited a good interfacial compatibility at low content of BSSFs and an interface debonding at high content of BSSFs. These investigations indicated that the BSSFs reinforcement to the composite is not consistent with interface compatibility of the ternary composites. The composites should be considered as a kind of green and low-cost biodegradable materials to replace traditional single-phase or multiphase materials. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47899.  相似文献   

2.
Naturally amorphous biopolyester poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P3/4HB) containing 21 mol % of 4HB was blended with semi‐crystal poly(butylene succinate) (PBS) with an aim to improve the properties of aliphatic polyesters. The effect of PBS contents on miscibility, thermal properties, crystallization kinetics, and mechanical property of the blends was evaluated by DSC, TGA, FTIR, wide‐angle X‐ray diffractometer (WAXD), Scanning Electron Microscope (SEM), and universal material testing machine. The thermal stability of P3/4HB was enhanced by blending with PBS. When PBS content is less than 30 wt %, the two polymers show better miscibility and their crystallization trend was enhanced by each other. The optimum mechanical properties were observed at the 5–10 wt % PBS blends. However, when the PBS content is more than 30 wt %, phase inversion happened. And the two polymers give lower miscibility and poor mechanical properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) [P(3HB‐co‐4HB)] fiber and P(3HB‐co‐4HB)/EVA fiber were obtained by single screw extrusion machine. The rheology of P(3HB‐co‐4HB) and P(3HB‐co‐4HB)/EVA blends was characterized by capillary rheometer, and the chemical groups of the blends were characterized with Fourier transform infrared spectroscopy (FT‐IR). The crystallization behavior and thermal, mechanical and elastic properties of the fibers were measured by differential scanning calorimeter (DSC), thermogravimetric analyzer (TGA) and single fiber strength tester, respectively. Besides, the moisture regain and drying shrinkage rates of the fibers were tested. These results showed that P(3HB‐co‐4HB)/EVA blends have better flowability, crystallinity, and thermal stability than P(3HB‐co‐4HB) fiber. The fracture strength of the P(3HB‐co‐4HB)/EVA fiber decreases with increasing the EVA content, but the elongation at break shows the contrary tendency. The rebound resilience ratio of P(3HB‐co‐4HB)/EVA fiber reaches 100%. Both moisture regain and drying shrinkage increase first and then decrease with increasing the EVA content. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41206.  相似文献   

4.
Biobased non‐fossil polyester poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P3/4HB) containing 4.0 mol % 4‐hydroxybutyrate (4HB) was melt‐mixed with short glass fibers (SGF) via a co‐rotating twin‐screw extruder. The compositing conditions, average glass fiber length and distribution, thermal, crystallization, and mechanical properties of the P3/4HB/SGF composites were investigated. Calcium stearate, two kinds of paraffin wax and modified ethylene bis‐stearamide (TAF) were investigated as lubricants for the P3/4HB/SGF composites. It revealed that TAF is the most efficient lubricant of the P3/4HB/SGF composites. Coupling agents 2,2′‐(1,3‐phenylene)bis‐2‐oxazoline (1,3‐PBO) and pyromellitic dianhydride (PMDA) were used as end‐group crosslinkers to reduce the degradation of P3/4HB and increase the mechanical properties of the P3/4HB/SGF composites. It showed that 1,3‐PBO is the efficient coupling agent. The optimum condition of the P3/4HB/SGF composites is 1.5 phr TAF, 1.0 phr 1,3‐PBO, and 30 wt % glass fiber content. And the maximum of tensile strength, tensile modulus, and impact strength of the composites is 3.7, 6.6, 1.8 times of the neat P3/4HB polymer, respectively. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
Poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P(3HB‐co‐4HB)) and nanometer zinc oxide (nano‐ZnO) modified by solid titanate coupling agent (TMC980) were selected to prepare P(3HB‐co‐4HB)/nano‐ZnO composites via melt blending. Scanning electron microscope (SEM), capillary rheometer, polarized optical microscopy (POM), and universal testing machine were used to characterize the fracture morphology, rheological property, spherulitic morphology, and mechanical properties of P(3HB‐co‐4HB)/nano‐ZnO composites. Halpin‐Tsai equation was used to quantitatively evaluate the dispersion and enhancement effects of modified nano‐ZnO on P(3HB‐co‐4HB). The results demonstrated that modified nano‐ZnO at 0.2%∼0.3% of volume fraction could significantly improve the tensile strength, elastic modulus and toughness, increase the melt viscosity, refine the spherulitic size, and rough the fracture morphology of P(3HB‐co‐4HB)/nano‐ZnO composites. Based on the effective aspect ratio (ξ) from Halpin‐Tsai model evaluation, the optimal dosage of nano‐ZnO for P(3HB‐co‐4HB)/nano‐ZnO composites was also at 0.2%∼0.3% of volume fraction. The Halpin‐Tsai equation was found to predict the experimental data most accurately for the P(3HB‐co‐4HB)/nano‐ZnO composites. POLYM. COMPOS., 37:3113–3121, 2016. © 2015 Society of Plastics Engineers  相似文献   

6.
Natural amorphous polymer poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P3HB4HB) containing 41 mol % of 4HB was blended with poly(3‐hydroxybutyrate) (PHB) with an aim to improve the properties of PHB. The influence of P3HB4HB contents on thermal and mechanical properties of the blends was evaluated with differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, stress–strain measurement and thermo gravimetric analyzer. Miscibility of PHB/P3HB4HB blends was mainly decided by the contents of P3HB4HB. When P3HB4HB exceeded 50 wt %, the two polymer phases separated and showed immiscibility. The addition of P3HB4HB did not alter the crystallinity of PHB, yet it diluted the PHB crystalline phase as revealed by DSC studies. DSC and FTIR results showed that the overall crystallinity of the blends decreased remarkably with increasing of P3HB4HB contents. Decreased glass transition temperature and crystallinity imparted desired flexibility for the blends. The ductility of the blends increased progressively with increasing of P3HB4HB content. Thus, the PHB mechanical properties can be modulated by changing the blend composition. P3HB4HB did not significantly improve the thermal stability of PHB, yet it is possible to melt process PHB without much molecular weights loss via blending it with suitable amounts of P3HB4HB. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

7.
The enhanced maleic anhydride-end-capped poly(propylene carbonate)/starch blends were prepared through starch oxidization and modification with a coupling agent, aluminic ester. The interfacial interaction, rheological behavior, and properties of blends were investigated through Fourier transform infrared spectroscopy, rheological measurement, mechanical property test, differential scanning calorimetric, thermogravimetric analysis, and moisture absorption test. The results show that hydrogen-bonding interaction is formed between poly(propylene carbonate) and starch, which makes the tensile strength of maleic anhydride-end-capped poly(propylene carbonate)/starch blends improved significantly. The glass transition temperature (Tg) of blends is increased when coupling agent is induced into polymer system. When increasing the content of starch modified with coupling agent from 10 to 30%, Tg values for composites increased from 30.5 to 32.8°C. Thermogravimetric analysis results show that oxidation of starch can improve the thermal stability and modification of starch through aluminic ester that can further increase the thermal stability of maleic anhydride-end-capped poly(propylene carbonate)/starch blends. Oxidation of starch has no significant effect on moisture absorption for poly(propylene carbonate)/starch blends.  相似文献   

8.
The mechanical, structural, and thermal properties of injection‐molded composites of granular cornstarch, poly(D ,L ‐lactic acid) (PDLLA), and poly(hydroxy ester ether) (PHEE) were investigated. These composites had high tensile strengths, ranging from 17 to 66 MPa, at starch loadings of 0–70 wt %. Scanning electron microscopy micrographs of fracture specimens revealed good adhesion between the starch granule and the polymer matrix, as evidenced by broken starch granules. The adhesion of the starch granules to the polymer matrix was the greatest when the matrix PDLLA/PHEE ratios ranged from zero to unity. At a PDLLA/PHEE ratio of less than unity, as the starch content increased in the composites, there was an increase in the tensile strength and modulus, with a concurrent decrease in elongation. The effects of starch on the mechanical properties of starch/PDLLA composites showed that as the starch content of the composite increased, the tensile strength and elongation to break decreased, whereas Young's modulus increased. In contrast, the tensile strength of starch/PHEE composites increased with increasing starch content. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1775–1786, 2003  相似文献   

9.
In this study, polymer hybrid composites were synthesized by sol‐gel process. 3‐Amino‐propyltrimethoxysilane [APTMS)/γ‐Glycidoxypropyl trimethoxy‐silane (GPTMS); (4, 4′‐Methylene‐dianiline (DDM)] and 1,4‐Bis(trimethoxysilylethyl) benzene (BTB) were added to DGEBA type epoxy resin for anticipated to exhibit excellent thermal stability. Boron trifluoride monoethylamine (BF3MEA) was used as catalyst. The structure of nanocomposites was characterized by attenuated total reflectance (ATR) and solid‐state 29Si NMR which suggest EP‐APTMS‐BTB/EP‐GPTMS‐BTB possesses T3; T1–T0, and T1 structures when the BTB content was lower than 10 wt % and higher 20 wt %, respectively. BF3MEA was proved to be an effective catalyst for the sol‐gel reaction of APTMS, but it could not promote for GPTMS. From TEM microphotographs, EP‐APTMS‐BTB (10 wt %) possesses a dense inorganic structure (particle size around 5–15 nm) compare with the loose inorganic structure of EP‐GPTM‐/BTB (10 wt %). DSC, TGA were use to analyze the thermal properties of the nanocomposites and DMA was used to analyze the dynamic mechanical properties of hybrid composites. The Tgs of all nanocomposites decreased with the increasing BTB content. A system with BTB content lower than 10 wt % showed good dynamic mechanical property and thermal stability (Td5 increased from 336°C to 371°C, char yield increased from 27.4 to 30.2%). The structure of inorganic network affects the Td5 and dynamic mechanical properties of composite. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40984.  相似文献   

10.
The effects of fibre loadings (10?40 wt.%) on mechanical properties, water absorption and dimensional stability of poly(butylene succinate)-filled kenaf bast fibre composites were investigated. The flexural strength and modulus of the composites increased with increasing fibre loading, while the impact strength of the composites decreased with increasing fibre loading. The higher the KBF loading was the higher absorption rate, equilibrium moisture content and the poorer dimensional stability of the composites. The poor retention and recovery of the composites from effect of water absorption were reflected by the poor flexural properties of the wet and re-dried composites after exposed to 90 days' water immersion.  相似文献   

11.
To obtain highly effective antifouling coatings, a series of UV‐curable polyurethane acrylates containing diluents [heptadecafluorodecyl methacrylate (PFA, 6 wt %)/isobornyl acrylate (IBOA, 34 wt %)/methyl methacrylate (MMA, 20‐5 wt %)/vinyl methacrylate (VMA, 0–15 wt %)] were prepared. This study examined the effect of bulky MMA (20‐5 wt %)/crosslinkable VMA (0–15 wt %) weight ratio on the properties of the UV‐curable polyurethane acrylates. The fluorine concentration in UV‐cured film surface increased with increasing VMA content up to 9 wt % and then decreased. The T, transparency, elasticity, and mechanical properties of the UV‐cured film samples increased with increasing VMA content. The water/methylene iodide contact angles and surface tension of samples increased from 107/79 to 121/91° and decreased from 17.8 to 12.7 mN/m with increasing VMA content up to 9 wt % and then decreased/increased, respectively. From these results, it was found that the optimum VMA content was 9 wt % to obtain a high‐performance antifouling coating. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42168.  相似文献   

12.
Polymer nanocomposites based on poly(vinyl alcohol) (PVA)/starch blend and graphene were prepared by solution mixing and casting. Glycerol was used as a plasticizer and added in the starch dispersion. The uniform dispersion of graphene in water was achieved by using an Ultrasonicator Probe. The composites were characterized by FTIR, tensile properties, X‐ray diffraction (XRD), thermal analysis, and FE‐SEM studies. FTIR studies indicated probable hydrogen bonding interaction between the oxygen containing groups on graphene surface and the –OH groups in PVA and starch. Mechanical properties results showed that the optimum loading of graphene was 0.5 wt % in the blend. XRD studies indicated uniform dispersion of graphene in PVA/starch matrix upto 0.5 wt % loadings and further increase caused agglomeration. Thermal studies showed that the thermal stability of PVA increased and the crystallinity decreased in the presence of starch and graphene. FE‐SEM studies showed that incorporation of graphene increased the ductility of the composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41827.  相似文献   

13.
A series of epoxy resin (EP)/octa(aminpropyl)silsesquioxane (POSS‐NH2) organic–inorganic hybrid composites (EP/POSS‐NH2 100/0, 95/5, 90/10, and 80/20 wt/wt) were prepared by melt casting and then curing. Viscoelastic and mechanical properties of these composites were studied by dynamic mechanical analysis and mechanical testing, respectively. Scanning electron microscopy was used to study of the micromorphologies of the composites and to elucidate the toughening mechanisms of POSS‐NH2. POSS units incorporated into the epoxy network showed good compatibility with the resin matrix. Phase separation was not observed even at high POSS content (20 wt%). Incorporation of POSS macromer into the epoxy network after curing increased the glass transition temperature, slightly narrowed the temperature range widths of the glass transition, and lowered the intensities of their loss moduli peaks of the resultant composites. The glass transition temperature of EP/POSS‐NH2 composites increased significantly with increasing POSS content at lower POSS content (<10 wt%), while increased slightly at higher POSS content. Both impact and flexural strengths of the hybrids reached their optimum values when 10 wt% content of POSS was introduced. POLYM. COMPOS., 28:175–179, 2007. © 2007 Society of Plastics Engineers.  相似文献   

14.
蒋果  徐景活  冯健  黄汉雄  张水洞 《化工学报》2015,66(7):2718-2724
采用熔融共混的方法制备了马来酸酐接枝聚碳酸亚丙酯(PPCMA)/热塑性淀粉(TPS)、PPCMA/热塑性氧化淀粉(TPOS)和PPCMA/ DL-TPOS(铝酸酯预处理的TPOS)复合材料,研究淀粉的氧化以及偶联剂的加入对PPC复合材料流变、形态和性能的影响。加入淀粉后的PPC复合材料拉伸强度有较大提高,红外光谱结果显示淀粉和PPCMA之间形成了氢键作用,这可能是力学性能提高的主要原因;热塑性氧化淀粉与PPCMA基材的界面相容性提高,PPCMA/TPOS复合材料的力学性能、储能模量、损耗模量和复数黏度均高于PPCMA/TPS复合材料;铝酸酯对TPOS的预处理促进了TPOS在PPCMA中的分散,提高了复合材料的拉伸强度,在PPCMA/DL-TPOS体系中,当DL-TPOS含量为40%(质量分数)时拉伸强度达到最大值,与PPCMA相比,提高了4.6倍。  相似文献   

15.
Blends of polycaprolactone (PCL)/gelatinized starch and polybutylene succinate adipate/gelatinized starch have been prepared in various ratios and their phase morphology and thermal/mechanical properties have been analyzed. For both the PCL/plasticized starch and polybutylene succinate adipate/plasticized starch blends the resistance to impact increased with increasing polyester content, and the tensile modulus reached a maximum at around 80 wt % polyester content. In blends containing up to 70 wt % polyester (as observed by scanning electron microscopy) a hierarchical dispersion of the gelatinized starch phase was observed (distinct domain sizes of those less than 5 μm and those greater than 15 μm) and in the blends containing 70–90 wt % polyester a more singular dispersed phase of gelatinized starch was observed within the polyester matrix. Dynamical mechanical analysis results showed some phase mixing was present in the PCL/gelatinized starch blends noted by the appearance of an additional tan δ peak located between the glass transition temperatures of the respective components and broadening of the low temperature transition corresponding to the Tg of the polyester (possibly the result of a starch‐rich polyester phase) with some overlap with the low temperature β transition of the gelatinized starch itself. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 802–811, 2007  相似文献   

16.
Cartilage tissue engineering is an emerging therapeutic strategy that aims to regenerate damaged cartilage caused by disease, trauma, ageing or developmental disorder. Since cartilage lacks regenerative capabilities, it is essential to develop approaches that deliver the appropriate cells, biomaterials and signalling factors to the defect site. Materials and fabrication technologies are therefore critically important for cartilage tissue engineering in designing temporary, artificial extracellular matrices (scaffolds), which support 3D cartilage formation. Hence, this work aimed to investigate the use of poly(3‐hydroxybutyrate)/microfibrillated bacterial cellulose (P(3HB)/MFC) composites as 3D‐scaffolds for potential application in cartilage tissue engineering. The compression moulding/particulate leaching technique employed in the study resulted in good dispersion and a strong adhesion between the MFC and the P(3HB) matrix. Furthermore, the composite scaffold produced displayed better mechanical properties than the neat P(3HB) scaffold. On addition of 10, 20, 30 and 40 wt% MFC to the P(3HB) matrix, the compressive modulus was found to have increased by 35%, 37%, 64% and 124%, while the compression yield strength increased by 95%, 97%, 98% and 102% respectively with respect to neat P(3HB). Both cell attachment and proliferation were found to be optimal on the polymer‐based 3D composite scaffolds produced, indicating a non‐toxic and highly compatible surface for the adhesion and proliferation of mouse chondrogenic ATDC5 cells. The large pores sizes (60 ‐ 83 µm) in the 3D scaffold allowed infiltration and migration of ATDC5 cells deep into the porous network of the scaffold material. Overall this work confirmed the potential of P(3HB)/MFC composites as novel materials in cartilage tissue engineering. © 2016 Society of Chemical Industry  相似文献   

17.
Methyl methacrylate and ethylacrylate (MMA‐co‐EA) and methyl methacrylate and butylacrylate (MMA‐co‐BA) copolymeric processing aids were introduced into poly(vinyl chloride) (PVC)/33.3 wt % wood–sawdust composites containing 0.6 and 2.4 phr of calcium stearate lubricant. The properties of the composites were monitored in terms of processibility, rheology, thermal and structural stability, and mechanical properties. It was found that the mixing torque, wall shear stress, and extrudate swell ratio increased with increasing processing aid content because of increased PVC entanglement. MMA‐co‐BA (PA20) was found to be more effective than MMA‐co‐EA (K120 and K130), this being associated with the flexibility of the processing aids, and the dipole–dipole interactions between sawdust particles and polymeric processing aids. The sharkskin characteristic of the composite extrudate at high extrusion rate was moderated by the presence of processing aids. Adding the acrylic‐based processing aids and lubricant into PVC/sawdust composites improved the thermal and structural stability of the composites, which were evidenced by an increase in glass transition and decomposition temperatures and a decrease in polyene sequences, respectively. The changes in the mechanical properties of the composites involved a composite homogeneity, which was varied by degree of entanglement and the presence of wood sawdust, and un‐reacted processing aids left in the composites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 782–790, 2004  相似文献   

18.
采用熔融挤出法制备了橡实淀粉 (AS)/聚乳酸 (PLA)二元复合材料。通过对复合材料力学性能、吸水性、熔融指数 (MIR)、扫描电镜 (SEM)、动态机械热分析 (DMA)和热稳定性 (TG)的测试,研究了橡实淀粉含量对复合材料的力学性能、疏水性能和热性能的影响。研究表明,随着AS加入量的增加,复合材料的刚性逐渐增强,在AS质量分散50%的情况下,拉伸强度仍达47.19 MPa。熔融流动性能、拉伸和弯曲强度则略微有所下降,其玻璃化转变温度略向高温偏移,保持在57 ℃。制备的复合材料具有优异的疏水性能,即使在AS加入量高达50%的情况下,接触角可达63.26°,吸水率仅为2.68%。  相似文献   

19.
《Polymer Composites》2017,38(7):1462-1473
Poly(ethylene‐co‐vinyl alcohol)/carbon black (EVOH/CB) composites were prepared by a solvent‐casting saponification (‐D) and precipitation saponification (‐P) methods with a poly(ethylene‐co‐vinyl acetate)/CB (EVA/CB) toluene suspension. The effects of the CB content and saponification time on the morphology, electrical resistivity, thermal, and mechanical properties of EVA/CB composites were examined. The volume resistivity (ρ v) of the EVA/CB‐D and EVA/CB‐P samples decreased significantly with increasing CB content and the percolation threshold of such composites was determined about 10 wt%. At 10 wt% of CB content, the ρ v of EVA/CB‐D composite decreased significantly with the saponification time, whereas ρ v of EVA/CB‐P composites did not change. As the saponification time increased, EVA/CB25wt% composites form cavity structure which CB is usually located in oval cavities larger than the particles themselves. This oval cavity structure almost resembles extruded high‐density polyethylene (HDPE)/CB composites. The morphology and PTC behavior of prepared composites were compared with those of HDPE/CB and the mechanism of PTC and NTC effects was discussed. POLYM. COMPOS., 38:1462–1473, 2017. © 2015 Society of Plastics Engineers  相似文献   

20.
Intumescent flame retardant polyurethane/starch (IFRPU/starch) composites were prepared by means of melt blending. Microencapsulated ammonium polyphosphate (MCAPP) was added to improve its compatibility with matrix, retardation of reaction between acid and carbon source, and its water resistancy. Fourier transform infrared spectroscopy (FTIR) confirmed the presence of hydrogen bonding and entangled network between IFR system and PU matrix. Further, scanning electron microscopy (SEM) illustrated homogeneity of starch in matrix. By addition of 10 wt % of starch and 20 wt % of IFR, limiting oxygen index (LOI) increased from 22.0 to 40.0 and UL94 V0 rating was achieved. Differential scanning calorimetry (DSC) detected three endothermic transitions and one glass transition (Tg). The temperature of transition III and Tg increased with starch due to crosslinking between PU and starch. The improved thermal stability in the presence of starch was confirmed by thermogravimetric analysis (TGA). Beside the fact that starch was used as a carbonization agent to improve flame retardancy, it also effectively led to enhanced mechanical and viscoelastic properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41158.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号