首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Passivity is a widely used concept in control theory having led to many significant results. This paper concentrates on one characteristic of passivity, namely passification‐based adaptive control. This concept applies to multi‐input multi‐output systems for which exists a combination of outputs that renders the open‐loop system hyper‐minimum phase. Under such assumptions, the system may be passified by both high‐gain static output feedback and by a particular adaptive control algorithm. This last control law is modified here to guarantee its coefficients to be bounded. The contribution of this paper is to investigate its robustness with respect to parametric uncertainty. Time response characteristics are illustrated on examples including realistic situations with noisy output and saturated input. Theoretical results are formulated as linear matrix inequalities and can hence be readily solved with semi‐definite programming solvers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, a new passivity‐based control (PBC) scheme based on state feedback is proposed in order to solve tracking, regulation and stabilization problems for a class of multi‐input multi‐output (MIMO) nonlinear systems expressed in the normal form, with time‐invariant parameters and locally bounded reference weakly minimum phase. For the proposed control scheme two new different state feedbacks, one non‐adaptive for the case when the system parameters are assumed to be known and the other adaptive for the case of unknown parameters, are developed. For the adaptive case it is assumed that the unknown parameters appear linearly in the equations. Analysis of the transient behaviour of the proposed control schemes is presented through the simulation of two examples. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
For a network of interconnected nonlinear dynamical systems, an adaptive leader–follower output feedback synchronization problem is considered. The proposed structure of decentralized controller and adaptation algorithm is based on speed gradient and passivity. Sufficient conditions of synchronization for one class of heterogeneous networks are established. An example of synchronization of the network of nonidentical Chua systems is analyzed. The main contribution of the paper is adaptive controller design and analysis under conditions of incomplete measurements, incomplete control, and uncertainty. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Passivity with sliding mode control for a class of nonlinear systems with and without unknown parameters is considered in this paper. In fact, a method for deriving a nonlinear system with external disturbances to a passive system is considered. Then a passive sliding mode control is designed corresponding to a given storage function. The passivity property guarantees the system stability while sliding mode control techniques assures the robustness of the proposed controller. When the system includes unknown parameters, an appropriate updated law is obtained so that the new transformed system is passive. The passivation property of linear systems with sliding mode is also analysed. The linear and nonlinear theories are applied to a simple pendulum model and the gravity‐flow/pipeline system, respectively. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
This paper investigates the adaptive quasi‐passification‐based stabilization problem for a class of switched nonlinearly parameterized systems via average dwell time method. First, when all the subsystems have any same relative degree, the global practical stability is achieved by combining the recursive feedback quasi‐passification design technique with a switched adaptive control technique. The states and parameter estimation errors converge to the ball whose sizes can be reduced by choosing appropriate design parameters. Second, when the system states are unavailable for measurements, adaptive output feedback controllers are designed to stabilize the system using quasi‐passivity. The proposed output feedback controllers do not depend on any state observer. Finally, three examples show the effectiveness of the proposed methods.  相似文献   

7.
The paper presents a new algorithm for the identification of a positive real rational transfer matrix of a multi‐input–multi‐output system from frequency domain data samples. It is based on the combination of least‐squares pole identification by the Vector Fitting algorithm and residue identification based on frequency‐independent passivity constraints by convex programming. Such an approach enables the identification of a priori guaranteed passive lumped models, so avoids the passivity check and subsequent (perturbative) passivity enforcement as required by most of the other available algorithms. As a case study, the algorithm is successfully applied to the macro‐modeling of a twisted cable pair, and the results compared with a passive identification performed with an algorithm based on quadratic programming (QPpassive), highlighting the advantages of the proposed formulation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
This paper illustrates a procedure for demonstrating and quantifying the importance of passivity in linear macromodels. This issue is critical whenever the macromodels are derived from tabulated port responses, either in time or frequency domain. We show an algorithmic procedure for the design of a passive termination network that will drive a given non‐passive macromodel to instability. Several termination structures characterized by various port couplings are investigated. Relaxed passivity conditions are also given, which guarantee the stability of the macromodel under specific reduced‐coupling loading conditions. Theoretical results are applied to a set of application test cases. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
基于无源控制方法的TCSC控制器及其仿真研究   总被引:6,自引:0,他引:6       下载免费PDF全文
简要介绍了一类基于无源系统理论的最优控制方法-PBC方法,基于该方法设计了晶闸管控制的串联补偿器(TCSC)无源控制器,由于该控制器中的变量均可实现本地测量,故使其能有效地应用于实际电力系统中,针对川渝电力系统的仿真结果,证明了基于PBC控制器的TCSC可以有效地提高系统的暂态稳定性和传输功率。  相似文献   

10.
This paper addresses the issue of fault estimation and accommodation for a discrete‐time switched system with actuator faults. Here, we assume that the sojourn probabilities are known a priori. By using the reduced‐order observer method, the sojourn probability approach, and the Lyapunov technique, a fault estimation algorithm is obtained for the considered system. The main objective of this work is to design a dynamic output feedback fault‐tolerant controller based on the obtained fault estimation information such that the closed‐loop discrete‐time switched system with available sojourn probabilities is robustly mean‐square stable and satisfies a prescribed mixed and passivity disturbance attenuation level in the presence of actuator faults. More precisely, a dynamic output feedback fault‐tolerant controller is established in terms of linear matrix inequalities. Finally, numerical examples are provided to illustrate the usefulness and effectiveness of the proposed design technique.  相似文献   

11.
The design of two multiple‐input multiple‐output (MIMO) controllers for induction motors, based on adaptive passivity, is presented in this paper. The controller design method is based on concepts of equivalence passivity via adaptive feedback, previously developed by the authors. Robustness under variations of the motor‐load parameters is guaranteed and the knowledge of such a parameters is not needed in the design. Simple proportional controllers for the torque, rotor flux and stator current control loops are used, due to the control simplification introduced by the use of feedback passive equivalence. A principle called ‘Torque‐Flux Control Principle’ is used in this article introducing a considerable simplification in the resultant controller. Because of the employment of this principle, the control efforts are diminished and rotor flux estimation (or measurement) is avoided. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
The partial fraction form of linear time‐invariant system transfer function is characterized through a cellular perspective, where each pole/residue fraction term is transformed into an equivalent circuit branch via an exact transformation. Minimal expressions for transformation of partial fraction form to/from equivalent circuit form are provided. The time‐domain and frequency‐domain impedance and admittance transfer function for resistor (R)–inductor (L), and resistance (R), inductance (L), capacitance (C), and conductance (G) equivalent circuit branches are presented in a form that is amenable to expedient inspection of cellular causality and stability and used to derive explicit expressions for the average power amenable to inspection of cellular passivity. The characteristics of passivity, causality, and stability at the cellular level are discussed to gain insight into the macro‐level network characteristics. Numerical examples are given to elucidate the aforementioned concepts and to provide insight into the behavior of linear time‐invariant systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
This work considers the problem of decentralized control of inverter-based ac micro-grid in different operation modes. The main objectives are to (i) design decentralized frequency and voltage controllers, to gather with power sharing, without information exchange between microsources (ii) design passive dynamic controllers which ensure stability of the entire microgrid system (iii) capture nonlinear, interconnected and large-scale dynamic of the micro-grid system withmeshed topology as a port-Hamiltonian formulation (iv) expand the property of shifted-energy function in the context of decentralized control of ac micro-grid (v) analysis of system stability in large signal point of view. More precisely, to deal with nonlinear, interconnected and large-scale structure of micro-grid systems, the port-Hamiltonian formulation is used to capture the dynamic of micro-grid components including microsource, distribution line and load dynamics as well as interconnection controllers. Furthermore, to deal with large signal stability problem of the microgrid system in the grid-connected and islanded conditions, the shifted-Hamiltonian energy function is served as a storage function to ensure incremental passivity and stability of the microgrid system. Moreover, it is shown that the aggregating of the microgrid dynamic and the decentralized controller dynamics satisfies the incremental passivity. Finally, the effectiveness of the proposed controllers is evaluated through simulation studies. The different scenarios including grid-connected and islanded modes as well as transition between both modes are simulated. The simulation conforms that the decentralized control dynamics are suited to achieve the desired objective of frequency synchronization, voltage control and power sharing in the grid-connected and islanded modes. The simulation results demonstrate the effectiveness of the proposed control strategy.  相似文献   

14.
This paper proposes an adaptive neural‐network control design for a class of output‐feedback nonlinear systems with input delay and unmodeled dynamics under the condition of an output constraint. A coordinate transformation with an input integral term and a Nussbaum function are combined to solve the problem of the input possessing both time delay and unknown control gain. By utilizing a barrier Lyapunov function and designing tuning functions, the adjustment of multiparameters is handled with a single adaptive law. The uncertainty of the system is approximated by dynamic signal and radial basis function neural networks (RBFNNs). Based on Lyapunov stability theory, an adaptive tracking control scheme is developed to guarantee all the signals of the closed‐loop systems are semiglobally uniformly ultimately bounded, and the output constraint is not violated.  相似文献   

15.
This paper shows that the adaptive output error identifier for linear time‐invariant continuous‐time systems proposed by Bestser and Zeheb is robust vis‐à‐vis finite energy measurement noise. More precisely, it is proven that the map from the noise to the estimation error is –stable—provided a tuning parameter is chosen sufficiently large. A procedure to determine the required minimal value of this parameter is also given. If the noise is exponentially vanishing, asymptotic convergence to zero of the prediction error is achieved. Instrumental for the establishment of the results is a suitable decomposition of the error system equations that allows us to strengthen—to strict—the well‐known passivity property of the identifier. The estimator neither requires fast adaptation, a dead‐zone, nor the knowledge of an upperbound on the noise magnitude, which is an essential requirement to prove stability of standard output error identifiers. To robustify the estimator with respect to non‐square integrable (but bounded) noises, a prediction error‐dependent leakage term is added in the integral adaptation. –stability of the modified scheme is established under a technical assumption. A simulated example, which is unstable for the equation error identifier and the output error identifier of Bestser and Zeheb, is used to illustrate the noise insensitivity property of the new scheme. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
We propose an adaptive output‐feedback controller for a general class of nonlinear triangular (strict‐feedback‐like) systems. The design is based on our recent results on a new high‐gain control design approach utilizing a dual high‐gain observer and controller architecture with a dynamic scaling. The technique provides strong robustness properties and allows the system class to contain unknown functions dependent on all states and involving unknown parameters (with no magnitude bounds required). Unlike our earlier result on this problem where a time‐varying design of the high‐gain scaling parameter was utilized, the technique proposed here achieves an autonomous dynamic controller by introducing a novel design of the observer, the scaling parameter, and the adaptation parameter. This provides a time‐invariant dynamic output‐feedback globally asymptotically stabilizing solution for the benchmark open problem proposed in our earlier work with no magnitude bounds or sign information on the unknown parameter being necessary. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Representative passive adaptive algorithms have been developed with a wide variety of applications. However, to the best of our knowledge, the attempt to unify or to compare them has not been clearly established in literature. In this article, we provide a passive adaptive framework which encompasses all those algorithms including the recently developed proportional‐integral (PI) adaptive scheme. A comparative analysis among performances of the passive algorithms is carried out by means of simulations considering the problem of passivity‐based adaptive tracking control of a simple pendulum. In addition, passivity property for PI algorithm is rigorously shown in case of linear parametrization. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper we study new relationships between a class of Lyapunov functions and the passivity theorem. It is proved that under some (sufficient) conditions a Lyapunov-stable system can be analysed as the feedback connection of two (strictly) passive subsystems. It is also shown that very recent adaptive schemes for linear plants of any relative degree can in a certain sense be unified through a passivity point of view.  相似文献   

19.
This paper suggests a simple convex optimization approach to state‐feedback adaptive stabilization problem for a class of discrete‐time LTI systems subject to polytopic uncertainties. The proposed method relies on estimating the uncertain parameters by solving an online optimization at each time step, such as a linear or quadratic programming, and then, on tuning the control law with that information, which can be conceptually viewed as a kind of gain‐scheduling or indirect adaptive control. Specifically, an admissible domain of stabilizing state‐feedback gain matrices is designed offline by means of linear matrix inequality problems, and based on the online estimation of the uncertain parameters, the state‐feedback gain matrix is calculated over the set of stabilizing feedback gains. The proposed stabilization algorithm guarantees the asymptotic stability of the overall closed‐loop control system. An example is given to show the effectiveness of the proposed approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
汽轮发电机励磁与汽门协调无源性控制   总被引:7,自引:6,他引:7  
论文利用协调无源性方法,对汽轮同步发电机系统进行励磁控制和汽门调节,达到功角和输出电压的稳定性.文中采用四阶双输入模型,由backstepping方法得到汽门控制输入,再用协调无源性设计励磁控制部分,使得整个系统达到反馈无源,保证了系统的渐近稳定性。由于在控制器的设计中,未用到任何线性化方法,因而所得控制器充分利用了系统的非线性特性。通过仿真,证实了设计思想的正确性与控制方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号