首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The charge transport in pristine poly(3‐hexylthiophene) (P3HT) films and in photovoltaic blends of P3HT with [6,6]‐phenyl C61 butyric acid methyl ester (PCBM) is investigated to study the influence of charge‐carrier transport on photovoltaic efficiency. The field‐ and temperature dependence of the charge‐carrier mobility in P3HT of three different regioregularities, namely, regiorandom, regioregular with medium regioregularity, and regioregular with very high regioregularity are investigated by the time‐of‐flight technique. While medium and very high regioregularity polymers show the typical absorption features of ordered lamellar structures of P3HT in the solid state even without previous annealing, films of regiorandom P3HT are very disordered as indicated by their broad and featureless absorption. This structural difference in the solid state coincides with partially non‐dispersive transport and hole mobilities µh of around 10?4 and 10?5 cm2 V?1 s?1 for the high and medium regioregularity P3HT, respectively, and a slow and dispersive charge transport for the regiorandom P3HT. Upon blending the regioregular polymers with PCBM, the hole mobilities are typically reduced by one order of magnitude, but they do not significantly change upon additional post‐spincasting annealing. Only in the case of P3HT with high regioregularity are the electron mobilities similar to the hole mobilities and the charge transport is, thus, balanced. Nonetheless, devices prepared from both materials exhibit similar power conversion efficiencies of 2.5%, indicating that very high regioregularity may not substantially improve order and charge‐carrier transport in P3HT:PCBM and does not lead to significant improvements in the power‐conversion efficiency of photovoltaic devices.  相似文献   

2.
The correlation between morphology and optoelectronic performance in organic thin‐film transistors based on blends of photochromic diarylethenes (DAE) and poly(3‐hexylthiophene) (P3HT) is investigated by varying molecular weight (Mw = 20–100 kDa) and regioregularity of the conjugated polymer as well as the temperature of thermal annealing (rt‐160 °C) in thin films. Semicrystalline architectures of P3HT/DAE blends comprise crystalline domains, ensuring efficient charge transport, and less aggregated regions, where DAEs are located as a result of their spontaneous expulsion from the crystalline domains during the self‐assembly. The best compromise between field‐effect mobility (μ) and switching capabilities is observed in blends containing P3HT with Mw = 50 kDa, exhibiting μ as high as 1 × 10?3 cm2 V?1 s?1 combined with a >50% photoswitching ratio. Higher or lower Mw than 50 kDa are found to be detrimental for field‐effect mobility and to lead to reduced device current switchability. The microstructure of the regioregular P3HT blend is found to be sensitive to the thermal annealing temperature, with an increase in μ and a decrease in current modulation being observed as a response to the light‐stimulus likely due to an increased P3HT‐DAE segregation, partially hindering DAE photoisomerization. The findings demonstrate the paramount importance of fine tuning the structure and morphology of bicomponent films for leveraging the multifunctional nature of optoelectronic devices.  相似文献   

3.
Conjugated rod‐coil block copolymers provide an interesting route towards enhancing the properties of the conjugated block due to self‐assembly and the interplay of rod‐rod and rod‐coil interactions. Here, we demonstrate the ability of an attached semi‐fluorinated block to significantly improve upon the charge carrier properties of regioregular poly(3‐hexyl thiophene) (rr‐P3HT) materials on bare SiO2. The thin film hole mobilities on bare SiO2 dielectric surfaces of poly (3‐hexyl thiophene)‐block‐polyfluoromethacrylates (P3HT‐b‐PFMAs) can approach up to 0.12 cm2 V?1 s?1 with only 33 wt% of the P3HT block incorporated in the copolymer, as compared to rr‐P3HT alone which typically has mobilities averaging 0.03 cm2 V?1 s?1. To our knowledge, this is the highest mobility reported in literature for block copolymers containing a P3HT. More importantly, these high hole mobilities are achieved without multistep OTS treatments, argon protection, or post‐annealing conditions. Grazing incidence wide‐angle x‐ray scattering (GIWAX) data revealed that in the P3HT‐b‐PFMA copolymers, the P3HT rod block self‐assembles into highly ordered lamellar structures, similar to that of the rr‐P3HT homopolymer. Grazing incidence small‐angle x‐ray scattering (GISAXS) data revealed that lamellar structures are only observed in perpendicular direction with short PFMA blocks, while lamellae in both perpendicular and parallel directions are observed in polymers with longer PFMA blocks. AFM, GIWAXS, and contact angle measurements also indicate that PFMA block assembles at the polymer thin film surface and forms an encapsulation layer. The high charge carrier mobilities and the hydrophobic surface of the block copolymer films clearly demonstrates the influence of the coil block segment on device performance by balancing the crystallization and microphase separation in the bulk morphological structure.  相似文献   

4.
The morphological, bipolar charge‐carrier transport, and photovoltaic characteristics of poly(3‐alkylthiophene) (P3AT):[6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) blends are studied as a function of alkyl side‐chain length m, where m equals the number of alkyl carbon atoms. The P3ATs studied are poly(3‐butylthiophene) (P3BT, m = 4), poly(3‐pentylthiophene) (P3PT, m = 5), and poly(3‐hexylthiophene) (P3HT, m = 6). Solar cells with these blends deliver similar order of photo‐current yield (exceeding 10 mA cm?2) irrespective of side‐chain length. Power conversion efficiencies of 3.2, 4.3, and 4.6% are within reach using solar cells with active layers of P3BT:PCBM (1:0.8), P3PT:PCBM (1:1), and P3HT:PCBM (1:1), respectively. A difference in fill factor values is found to be the main source of efficiency difference. Morphological studies reveal an increase in the degree of phase separation with increasing alkyl chain length. Moreover, while P3PT:PCBM and P3HT:PCBM films have similar hole mobility, measured by hole‐only diodes, the hole mobility in P3BT:PCBM lowers by nearly a factor of four. Bipolar measurements made by field‐effect transistor showed a decrease in the hole mobility and an increase in the electron mobility with increasing alkyl chain length. Balanced charge transport is only achieved in the P3HT:PCBM blend. This, together with better processing properties, explains the superior properties of P3HT as a solar cell material. P3PT is proved to be a potentially competitive material. The optoelectronic and charge transport properties observed in the different P3AT:PCBM bulk heterojunction (BHJ) blends provide useful information for understanding the physics of BHJ films and the working principles of the corresponding solar cells.  相似文献   

5.
The time‐of‐flight method has been used to study the effect of P3HT molecular weight (Mn = 13–121 kDa) on charge mobility in pristine and PCBM blend films using highly regioregular P3HT. Hole mobility was observed to remain constant at 10?4 cm2V?1s?1 as molecular weight was increased from 13–18 kDa, but then decreased by one order of magnitude as molecular weight was further increased from 34–121 kDa. The decrease in charge mobility observed in blend films is accompanied by a change in surface morphology, and leads to a decrease in the performance of photovoltaic devices made from these blend films.  相似文献   

6.
The influence of polymer entanglement on the self‐assembly, molecular packing structure, and microstructure of low‐Mw (lightly entangled) and high‐Mw (highly entangled) poly (3‐hexylthiophene) (P3HT), and the carrier transport in thin‐film transistors, are investigated. The polymer chains are gradually disentangled in a marginal solvent via ultrasonication of the polymer solution, and demonstrate improved diffusivity of precursor species (coils, aggregates, and microcrystallites), enhanced nucleation and crystallization of P3HT in solution, and self‐assembly of well‐ordered and highly textured fibrils at the solid–liquid interface. In low‐Mw P3HT, reducing chain entanglement enhances interchain and intrachain ordering, but reduces the interconnectivity of ordered domains (tie molecules) due to the presence of short chains, thus deteriorating carrier transport even in the face of improving crystallinity. Reducing chain entanglement in high‐Mw P3HT solutions increases carrier mobility up to ≈20‐fold, by enhancing interchain and intrachain ordering while maintaining a sufficiently large number of tie molecules between ordered domains. These results indicate that charge carrier mobility is strongly governed by the balancing of intrachain and interchain ordering, on the one hand, and interconnectivity of ordered domains, on the other hand. In high‐Mw P3HT, intrachain and interchain ordering appear to be the key bottlenecks to charge transport, whereas in low‐Mw P3HT, the limited interconnectivity of the ordered domains acts as the primary bottleneck to charge transport.  相似文献   

7.
The effect of controlled thermal annealing on charge transport and photogeneration in bulk‐heterojunction solar cells made from blend films of regioregular poly(3‐hexylthiophene) (P3HT) and methanofullerene (PCBM) has been studied. With respect to the charge transport, it is demonstrated that the electron mobility dominates the transport of the cell, varying from 10–8 m2 V–1 s–1 in as‐cast devices to ≈3 × 10–7 m2 V–1 s–1 after thermal annealing. The hole mobility in the P3HT phase of the blend is dramatically affected by thermal annealing. It increases by more than three orders of magnitude, to reach a value of up to ≈ 2 × 10–8 m2 V–1 s–1 after the annealing process, as a result of an improved crystallinity of the film. Moreover, upon annealing the absorption spectrum of P3HT:PCBM blends undergo a strong red‐shift, improving the spectral overlap with solar emission, which results in an increase of more than 60 % in the rate of charge‐carrier generation. Subsequently, the experimental electron and hole mobilities are used to study the photocurrent generation in P3HT:PCBM devices as a function of annealing temperature. The results indicate that the most important factor leading to a strong enhancement of the efficiency, compared with non‐annealed devices, is the increase of the hole mobility in the P3HT phase of the blend. Furthermore, numerical simulations indicate that under short‐circuit conditions the dissociation efficiency of bound electron–hole pairs at the donor/acceptor interface is close to 90 %, which explains the large quantum efficiencies measured in P3HT:PCBM blends.  相似文献   

8.
Field‐effect transistor memories usually require one additional charge storage layer between the gate contact and organic semiconductor channel. To avoid such complication, new donor–acceptor rod–coil diblock copolymers (P3HT44b‐Pison) of poly(3‐hexylthiophene) (P3HT)‐block‐poly(pendent isoindigo) (Piso) are designed, which exhibit high performance transistor memory characteristics without additional charge storage layer. The P3HT and Piso blocks are acted as the charge transporting and storage elements, respectively. The prepared P3HT44b‐Pison can be self‐assembled into fibrillar‐like nanostructures after the thermal annealing process, confirmed by atomic force microscopy and grazing‐incidence X‐ray diffraction. The lowest‐unoccupied molecular orbital levels of the studied polymers are significantly lowered as the block length of Piso increases, leading to a stronger electron affinity as well as charge storage capability. The field‐effect transistors (FETs) fabricated from P3HT44b‐Pison possess p‐type mobilities up to 4.56 × 10?2 cm2 V?1 s?1, similar to that of the regioregular P3HT. More interestingly, the FET memory devices fabricated from P3HT44b‐Pison exhibit a memory window ranging from 26 to 79 V by manipulating the block length of Piso, and showed stable long‐term data endurance. The results suggest that the FET characteristics and data storage capability can be effectively tuned simultaneously through donor/acceptor ratio and thin film morphology in the block copolymer system.  相似文献   

9.
A novel fullerene derivative, 1,1‐bis(4,4′‐dodecyloxyphenyl)‐(5,6) C61, diphenylmethanofullerene (DPM‐12), has been investigated as a possible electron acceptor in photovoltaic devices, in combination with two different conjugated polymers poly[2‐methoxy‐5‐(3′,7′‐dimethyloctyloxy)‐para‐phenylene vinylene] (OC1C10‐PPV) and poly[3‐hexyl thiophene‐2,5‐diyl] (P3HT). High open‐circuit voltages, VOC = 0.92 and 0.65 V, have been measured for OC1C10‐PPV:DPM‐12‐ and P3HT:DPM‐12‐based devices, respectively. In both cases, VOC is 100 mV above the values measured on devices using another routinely used fullerene acceptor, [6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM). This is somewhat unexpected when taking into account the identical redox potentials of both acceptor materials at room temperature. The temperature‐dependent VOC reveals, however, the same effective bandgap (HOMOPolymer–LUMOFullerene; HOMO = highest occupied molecular orbital, LUMO = lowest unoccupied molecular orbital) of 1.15 and 0.9 eV for OC1C10‐PPV and P3HT, respectively, independent of the acceptor used. The higher VOC at room temperature is explained by different ideality factors in the dark‐diode characteristics. Under white‐light illumination (80 mW cm–2), photocurrent densities of 1.3 and 4.7 mA cm–2 have been obtained in the OC1C10‐PPV:DPM‐12‐ and P3HT:DPM‐12‐based devices, respectively. Temperature‐dependent current density versus voltage characteristics reveal a thermally activated (shallow trap recombination limited) photocurrent in the case of OC1C10‐PPV:DPM‐12, and a nearly temperature‐independent current density in P3HT:DPM‐12. The latter clearly indicates that charge carriers traverse the active layer without significant recombination, which is due to the higher hole‐mobility–lifetime product in P3HT. At the same time, the field‐effect electron mobility in pure DPM‐12 has been found to be μe = 2 × 10–4 cm2 V–1 s–1, that is, forty‐times lower than the one measured in PCBM (μe = 8 × 10–3 cm2 V–1 s–1).  相似文献   

10.
Silicon nanocrystals (Si NCs) are shown to be an electron acceptor in hybrid solar cells combining Si NCs with poly(3‐hexylthiophene) (P3HT). The effects of annealing and different metal electrodes on Si NC/P3HT hybrid solar cells are studied in this paper. After annealing at 150 °C, Si NC/P3HT solar cells exhibit power conversion efficiencies as high as 1.47%. The hole mobility in the P3HT phase extracted from space‐charge‐limited current measurements of hole‐only devices increases from 2.48 × 10?10 to 1.11 × 10?9 m2 V?1 s?1 after annealing, resulting in better transport in the solar cells. A quenching of the open‐circuit voltage and short‐circuit current is observed when high work function metals are deposited as the cathode on Si NC/P3HT hybrid devices.  相似文献   

11.
The properties of molecularly doped films of conjugated polymers are explored as the crystallinity of the polymer is systematically varied. Solution sequential processing (SqP) was used to introduce 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4TCNQ) into poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) while preserving the pristine polymer's degree of crystallinity. X‐ray data suggest that F4TCNQ anions reside primarily in the amorphous regions of the film as well as in the P3HT lamellae between the side chains, but do not π‐stack within the polymer crystallites. Optical spectroscopy shows that the polaron absorption redshifts with increasing polymer crystallinity and increases in cross section. Theoretical modeling suggests that the polaron spectrum is inhomogeneously broadened by the presence of the anions, which reside on average 6–8 Å from the polymer backbone. Electrical measurements show that the conductivity of P3HT films doped by F4TCNQ via SqP can be improved by increasing the polymer crystallinity. AC magnetic field Hall measurements show that the increased conductivity results from improved mobility of the carriers with increasing crystallinity, reaching over 0.1 cm2 V?1 s?1 in the most crystalline P3HT samples. Temperature‐dependent conductivity measurements show that polaron mobility in SqP‐doped P3HT is still dominated by hopping transport, but that more crystalline samples are on the edge of a transition to diffusive transport at room temperature.  相似文献   

12.
In this paper a simple, casting solution technique for the preparation of two‐dimensional (2D) arrays of very‐high molecular weight (MW) 1D‐Pc supramolecular inorganic polymers is described. The soluble fluoroaluminium tetra‐tert‐butylphthalocyanine (ttbPcAlF) is synthesized and characterized, which can be self‐assembled to form 2D arrays of very‐high‐MW 1D‐Pc supramolecular inorganic polymers. High‐resolution transmission electron microscopy (HRTEM) demonstrates that the 1D‐ttbPcAlF, having a cofacial ring spacing of ~0.36 nm and an interchain distance of ~1.7 nm, self‐assembles into 2D‐nanosheets (~140 nm in length, ~20 nm in width, and equivalent to MW of 3.2 × 105 g mol?1). The film cast from a 1,2‐dichloroethane (DCE) solution shows a minimum hole‐mobility of ~0.3 cm2 V?1 s?1 at room temperature by flash‐photolysis time‐resolved microwave conductivity (TRMC) measurements and a fairly high dark dc‐conductivity of ~1 × 10?3 S cm?1.  相似文献   

13.
The use of electrostatic charge injection (i.e., the transverse field effect) to induce both very large two‐dimensional hole densities (~ 1015 charges cm–2) and metallic conductivities in poly(3‐hexylthiophene) (P3HT) is reported. Films of P3HT are electrostatically gated by a solution‐deposited polymer‐electrolyte gate dielectric in a field‐effect‐transistor configuration. Exceptionally high hole field‐effect mobilities (up to 0.7 cm2 V–1 s–1) are measured concurrently with large hole densities, resulting in an extremely large sheet conductance of 200 μS sq.–1. The large room‐temperature conductivity of 1000 S cm–1 together with the very low measured activation energies (0.7–4 meV) suggest that the metal–insulator transition in P3HT is achieved. A maximum in sheet conductance versus charge density is also observed, which may result from near‐filling of the valence band or from charge correlations that lower the carrier mobility. Importantly, the large hole densities in P3HT are achieved using capacitive coupling between the polymer‐electrolyte gate dielectric and P3HT (i.e., the field effect) and not via chemical or electrochemical doping. Electrostatic control of carrier density up to 1015 charges cm–2 (~ 1022 charges cm–3) opens opportunities to explore systematically the importance of charge‐correlation effects on transport in conjugated polymers without the structural rearrangement associated with chemical or electrochemical doping.  相似文献   

14.
A bimodal texturing effect of semiconducting polymers is investigated by incorporating conjugated small molecules to significantly improve the charge transport characteristics via formation of 3D transport pathways. Solution blending of the electron‐transporting polymer, poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} (P(NDI2OD‐T2)), with small molecular crystals of tetrathiafulvalene and tetracyanoquinodimethane is used, and the thin film microstructures are studied using a combination of atomic force microscopy, transmission electron microscopy, 2D grazing incidence X‐ray diffraction, and surface‐sensitive near‐edge X‐ray absorption fine structure. Blended thin films show edge‐on and face‐on bimodal texture with long‐range order and microstructure packing orientation preferable for electron transport through the channel in organic field‐effect transistors, which is confirmed by high electron mobility 1.91 cm2 V?1 s?1, small contact resistance, and low energetic disorder according to temperature dependence of the field‐effect mobility. Structural changes suggest a 3D network charge transport model via lamella packing and bimodal orientation of the semiconducting polymers.  相似文献   

15.
This study addresses two key issues, stability and efficiency, of polymer solar cells based on blended poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) by demonstrating a film‐forming process that involves low‐temperature drying (?5 °C) and subsequent annealing of the active layer. The low‐temperature process achieves 4.70% power conversion efficiency (PCE) and ~1250 h storage half‐life at 65 °C, which are significant improvements over the 3.39% PCE and ~143 h half‐life of the regular room‐temperature process. The improvements are attributed to the enhanced nucleation of P3HT crystallites as well as the minimized separation of the P3HT and PCBM phases at the low drying temperature, which upon post‐drying annealing results in a morphology consisting of small PCBM‐rich domains interspersed within a densely interconnected P3HT crystal network. This morphology provides ample bulk‐heterojunction area for charge generation while allowing for facile charge transport; moreover, the P3HT crystal network serves as an immobile frame at heating temperatures less than the melting point (Tm) of P3HT, thus preventing PCBM/P3HT phase separation and the corresponding device degradation.  相似文献   

16.
Novel donor–acceptor rod–coil diblock copolymers of regioregular poly(3‐hexylthiophene) ( P3HT )‐block‐poly(2‐phenyl‐5‐(4‐vinylphenyl)‐1,3,4‐oxadiaz‐ole) ( POXD ) are successfully synthesized by the combination of a modified Grignard metathesis reaction ( GRIM ) and atom transfer radical polymerization ( ATRP ). The effects of the block ratios of the P3HT donor and POXD pendant acceptor blocks on the morphology, field effect transistor mobility, and memory device characteristics are explored. The TEM, SAXS, WAXS, and AFM results suggest that the coil block fraction significantly affects the chain packing of the P3HT block and depresses its crystallinity. The optical absorption spectra indicate that the intramolecular charge transfer between the main chain P3HT donor and the side chain POXD acceptor is relatively weak and the level of order of P3HT chains is reduced by the incorporation of the POXD acceptor. The field effect transistor (FET) hole mobility of the system exhibits a similar trend on the optical properties, which are also decreased with the reduced ordered P3HT crystallinity. The low‐lying highest occupied molecular orbital (HOMO) energy level (–6.08 eV) of POXD is employed as charge trap for the electrical switching memory devices. P3HT‐ b ‐POXD exhibits a non‐volatile bistable memory or insulator behavior depending on the P3HT / POXD block ratio and the resulting morphology. The ITO/ P3HT44b‐ POXD18 /Al memory device shows a non‐volatile switching characteristic with negative differential resistance (NDR) effect due to the charge trapped POXD block. These experimental results provide the new strategies for the design of donor‐acceptor rod‐coil block copolymers for controlling morphology and physical properties as well as advanced memory device applications.  相似文献   

17.
A series of isoindigo‐based conjugated polymers (PII2F‐CmSi, m = 3–11) with alkyl siloxane‐terminated side chains are prepared, in which the branching point is systematically “moved away” from the conjugated backbone by one carbon atom. To investigate the structure–property relationship, the polymer thin film is subsequently tested in top‐contact field‐effect transistors, and further characterized by both grazing incidence X‐ray diffraction and atomic force microscopy. Hole mobilities over 1 cm2 V?1 s?1 is exhibited for all soluble PII2F‐CmSi (m = 5–11) polymers, which is 10 times higher than the reference polymer with same polymer backbone. PII2F‐C9Si shows the highest mobility of 4.8 cm2 V?1 s?1, even though PII2F‐C11Si exhibits the smallest π–π stacking distance at 3.379 Å. In specific, when the branching point is at, or beyond, the third carbon atoms, the contribution to charge transport arising from π–π stacking distance shortening becomes less significant. Other factors, such as thin‐film microstructure, crystallinity, domain size, become more important in affecting the resulting device's charge transport.  相似文献   

18.
The influence of the interface of the dielectric SiO2 on the performance of bottom‐contact, bottom‐gate poly(3‐alkylthiophene) (P3AT) field‐effect transistors (FETs) is investigated. In particular, the operation of transistors where the active polythiophene layer is directly spin‐coated from chlorobenzene (CB) onto the bare SiO2 dielectric is compared to those where the active layer is first spin‐coated then laminated via a wet transfer process such that the film/air interface of this film contacts the SiO2 surface. While an apparent alkyl side‐chain length dependent mobility is observed for films directly spin‐coated onto the SiO2 dielectric (with mobilities of ≈10?3 cm2 V?1 s?1 or less) for laminated films mobilities of 0.14 ± 0.03 cm2 V?1 s?1 independent of alkyl chain length are recorded. Surface‐sensitive near edge X‐ray absorption fine structure (NEXAFS) spectroscopy measurements indicate a strong out‐of‐plane orientation of the polymer backbone at the original air/film interface while much lower average tilt angles of the polymer backbone are observed at the SiO2/film interface. A comparison with NEXAFS on crystalline P3AT nanofibers, as well as molecular mechanics and electronic structure calculations on ideal P3AT crystals suggest a close to crystalline polymer organization at the P3AT/air interface of films from CB. These results emphasize the negative influence of wrongly oriented polymer on charge carrier mobility and highlight the potential of the polymer/air interface in achieving excellent “out‐of‐plane” orientation and high FET mobilities.  相似文献   

19.
Regioregular poly(3‐hexyl thiophene) (RR P3HT) is drop‐cast to fabricate field‐effect transistor (FET) devices from different solvents with different boiling points and solubilities for RR P3HT, such as methylene chloride, toluene, tetrahydrofuran, and chloroform. A Petri dish is used to cover the solution, and it takes less than 30 min for the solvents to evaporate at room temperature. The mesoscale crystalline morphology of RR P3HT thin films can be manipulated from well‐dispersed nanofibrils to well‐developed spherulites by changing solution processing conditions. The morphological correlation with the charge‐carrier mobility in RR P3HT thin‐film transistor (TFT) devices is investigated. The TFT devices show charge‐carrier mobilities in the range of 10–4 ~ 10–2 cm2 V–1 s–1 depending on the solvent used, although grazing‐incidence X‐ray diffraction (GIXD) reveals that all films develop the same π–π‐stacking orientation, where the <100>‐axis is normal to the polymer films. By combining results from atomic force microscopy (AFM) and GIXD, it is found that the morphological connectivity of crystalline nanofibrils and the <100>‐axis orientation distribution of the π–π‐stacking plane with respect to the film normal play important roles on the charge‐carrier mobility of RR P3HT for TFT applications.  相似文献   

20.
The study of monolayer organic field‐effect transistors (MOFETs) provides an effective way to investigate the intrinsic charge transport of semiconductors. To date, the research based on organic monolayers on polymeric dielectrics lays far behind that on inorganic dielectrics and the realization of a bulk‐like carrier mobility on pure polymer dielectrics is still a formidable challenge for MOFETs. Herein, a quasi‐monolayer coverage of pentacene film with orthorhombic phase is grown on the poly (amic acid) (PAA) dielectric layer. More significantly, charge density redistribution occurs at the interface between the pentacene and PAA caused by electron transfer from pentacene to the PAA dielectric layer, which is verified by theoretical simulations and experiments. As a consequence, an enhanced hole accumulation layer is formed and pentacene‐based MOFETs on pure polymer dielectrics exhibit bulk‐like carrier mobilities of up to 13.7 cm2 V?1 s?1 from the saturation region at low VGS, 9.1 cm2 V?1 s?1 at high VGS and 7.6 cm2 V?1 s?1 from the linear region, which presents one of the best results of previously reported MOFETs so far and indicates that the monolayer semiconductor growing on pure polymer dielectric could produce highly efficient charge transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号