首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Polymer solar cells (PSCs) are fabricated using a novel film deposition method, the electrostatic spray (e‐spray) technique. Stable atomization and uniform deposition of the polymer blend by e‐spray are achieved by manipulating the solution concentration, the solvent composition, and the electric field. The performance of PSCs is primarily influenced by the inherent film morphology of the e‐sprayed polymer‐blend active layers, which is significantly different from that of the conventional films that are formed using the spin‐coating (SC) method. The intrinsically formed interfacial boundaries between the e‐sprayed blend pancakes resist charge transport, which unfavorably influences device efficiency. The internal series resistance (RS) of the PSCs that are formed using the e‐spray method (e‐spray‐PSC) is significantly reduced by a solvent vapor soaking (SVS) treatment in addition to the conventional thermodynamic nanomorphology controls. The detailed relationship between the morphologies (film morphology and internal nanomorphology) and the RS is revealed using impedance spectroscopy. The performance of the e‐spray‐PSCs is comparable to those of the PSCs that are fabricated using the SC method under identical conditions. Therefore, the e‐spray method can be used to fabricate ultralow‐cost PSCs, because of the performance results combined with the intrinsic advantages that the e‐spray method is simple and has a low materials loss.  相似文献   

2.
Currently, morphology optimization methods for the fused-ring nonfullerene acceptor-based polymer solar cells (PSCs) empirically follow the treatments originally developed in fullerene-based systems, being unable to meet the diverse molecular structures and strong crystallinity of the nonfullerene acceptors. Herein, a new and universal morphology controlling method is developed by applying volatilizable anthracene as solid additive. The strong crystallinity of anthracene offers the possibility to restrict the over aggregation of fused-ring nonfullerene acceptor in the process of film formation. During the kinetic process of anthracene removal in the blend under thermal annealing, donor can imbed into the remaining space of anthracene in the acceptor matrix to form well-developed nanoscale phase separation with bi-continuous interpenetrating networks. Consequently, the treatment of anthracene additive enables the power conversion efficiency (PCE) of PM6:Y6-based devices to 17.02%, which is a significant improvement with regard to the PCE of 15.60% for the reference device using conventional treatments. Moreover, this morphology controlling method exhibits general application in various active layer systems to achieve better photovoltaic performance. Particularly, a remarkable PCE of 17.51% is achieved in the ternary PTQ10:Y6:PC71BM-based PSCs processed by anthracene additive. The morphology optimization strategy established in this work can offer unprecedented opportunities to build state-of-the-art PSCs.  相似文献   

3.
介绍了体异质结聚合物太阳电池的基本原理,并分析了限制体异质结有机太阳电池转化效率的因素。从提高激子的产生效率及其解离效率、电极对电荷的引出效率、电池的稳定性以及电池的光谱吸收范围四个方面,综述了提高体异质结聚合物太阳电池能量转化效率的方法。  相似文献   

4.
The use of vapor phase polymerized poly(3,4‐ethylenedioxythiophene) (VPP‐PEDOT) as a metal‐replacement top anode for inverted solar cells is reported. Devices with both i) standard bulk heterojunction blends of poly(3‐hexylthiophene) (P3HT) donor and 1‐(3‐methoxycarbonyl)‐propyl‐1‐phenyl‐(6,6)C60 (PCBM) soluble fullerene acceptor and ii) hybrid inorganic/organic TiO2/P3HT acceptor/donor active layers are studied. Stamp transfer printing methods are used to deposit both the VPP‐PEDOT top anode and a work function enhancing PEDOT:polystyrenesulphonate (PEDOT:PSS) interlayer. The metal‐free devices perform comparably to conventional devices with an evaporated metal top anode, yielding power conversion efficiencies of 3% for bulk heterojunction blend and 0.6% for organic/inorganic hybrid structures. These encouraging results suggest that stamp transfer printed VPP‐PEDOT provides a useful addition to the electrode materials tool‐box available for low temperature and non‐vacuum solar cell fabrication.  相似文献   

5.
We use spectroscopic ellipsometry to study the evolution of structure and optoelectronic properties of poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl C61‐butyric acid methyl ester (PCBM) photovoltaic thin film blends upon thermal annealing. Four distinct processes are identified: the evaporation of residual solvent above the glass transition temperature of the blend, the relaxation of non‐equilibrium molecular conformation formed through spin‐casting, the crystallization of both P3HT and PCBM components, and the phase separation of the P3HT and PCBM domains. Devices annealed at 150 °C for between 10 and 60 min exhibit an average power conversion efficiency of around 4.0%. We find that the rate at which the P3HT/PCBM is returned to room temperature is more important in determining device efficiency than the duration of the isothermal annealing process. We conclude that the rapid quenching of a film from the annealing temperature to room temperature hampers the crystallization of the P3HT and can trap non‐equilibrium morphological states. Such states apparently impact on device short circuit current, fill factor and, thus, operational efficiency.  相似文献   

6.
聚合物太阳电池光敏薄膜的物理化学性质研究   总被引:2,自引:2,他引:0  
采用不同化学溶剂制备了聚合物太阳电池的光敏层薄膜,通过接触角测试和表面自由能参数计算,研究了化学溶剂与光敏薄膜物理化学性质之间的关系.实验结果显示,用四氢呋喃溶液制备的光敏薄膜具有较大的表面极性度和极性分量;化学溶剂通过影响聚合物链的聚集状态,进而在一定程度上影响光敏薄膜的性质.另外,分析讨论了化学溶剂对电极/光敏层界面形成及其太阳电池性能的影响.研究结果表明,成膜溶剂的合理选择对于优化聚合物太阳电池的性能是至关重要的.  相似文献   

7.
通过制备四种不同结构的器件,详细分析研究了活性层/阴极界面修饰对P3HT:PCBM聚合物体异质结太阳能电池性能的影响。当在P3HT:PCBM薄膜上旋涂一层PCBM,并蒸镀0.5 nm LiF时所制备的器件的填充因子和光电转换效率都得到较大的提高。对器件的光电性能和薄膜的形貌进行深入分析,阐明界面修饰的作用机理。  相似文献   

8.
By the introduction of different building blocks and side‐chains, a series of donor–acceptor type polymer acceptors containing naphthalene diimide have been successfully prepared. The theoretical and experimental results show that the molecular design effectively tunes the energy levels, solubility, and coplanarity of the acceptor polymers. The intermolecular packing, which has been considered as a key factor in the bulk heterojunction morphology, has been adjusted by changing the coplanarity. As a result of improved morphology and fine‐tuned energy levels, a power conversion efficiency of 6.0% has been demonstrated for the optimized devices, which is among the highest‐efficiencies for reported all‐polymer solar cells. The improved device performance may be attributed to the resemble crystallinity of the donor/acceptor polymers, which can lead to the optimal phase separation morphology balancing both charge transfer and transport.  相似文献   

9.
The insertion of a DNA nanolayer into polymer based solar cells, between the electron transport layer (ETL) and the active material, is proposed to improve the charge separation efficiency. Complete bulk heterojunction donor–acceptor solar cells of the layered type glass/electrode (indium tin oxide)/ETL/P3HT:PC70BM/hole transport layer/electrode (Ag) are investigated using femtosecond transient absorption spectroscopy both in the NIR and the UV–vis regions of the spectrum. The transient spectral changes indicate that when the DNA is deposited on the ZnO nanoparticles (ZnO‐NPs) it can imprint a different long range order on the poly(3‐hexylthiophene) (P3HT) polymer with respect to the non‐ZnO‐NPs/DNA containing cells. This leads to a larger delocalization of the initially formed exciton and its faster quenching which is attributed to more efficient exciton dissociation. Finally, the temporal response of the NIR absorption shows that the DNA promotes more efficient production of charge transfer states and free polarons in the P3HT cation indicating that the increased exciton dissociation correlates with increased charge separation.  相似文献   

10.
11.
The charge separation and transport dynamics in CdSe nanoparticle:poly(3‐hexylthiophene) (P3HT) blends are reported as a function of the shape of the CdSe‐nanoparticle electron acceptor (dot, rod, and tetrapod). For optimization of organic photovoltaic device performance it is crucial to understand the role of various nanostructures in the generation and transport of charge carriers. The sample processing conditions are carefully controlled to eliminate any processing‐related effects on the carrier generation and on device performance with the aim of keeping the conjugated polymer phase constant and only varying the shape of the inorganic nanoparticle acceptor phase. The electrodeless, flash photolysis time‐resolved microwave conductivity (FP‐TRMC) technique is used and the results are compared to the efficiency of photovoltaic devices that incorporate the same active layer. It is observed that in nanorods and tetrapods blended with P3HT, the high aspect ratios provide a pathway for the electrons to move away from the dissociation site even in the absence of an applied electric field, resulting in enhanced carrier lifetimes that correlate to increased efficiencies in devices. The processing conditions that yield optimum performance in high aspect ratio CdSe nanoparticles blended with P3HT result in poorly performing quantum dot CdSe:P3HT devices, indicating that the latter devices are inherently limited by the absence of the dimensionality that allows for efficient, prolonged charge separation at the polymer:CdSe interface.  相似文献   

12.
Integrated perovskite/organic bulk heterojunction (BHJ) solar cells have the potential to enhance the efficiency of perovskite solar cells by a simple one‐step deposition of an organic BHJ blend photoactive layer on top of the perovskite absorber. It is found that inverted structure integrated solar cells show significantly increased short‐circuit current (Jsc) gained from the complementary absorption of the organic BHJ layer compared to the reference perovskite‐only devices. However, this increase in Jsc is not directly reflected as an increase in power conversion efficiency of the devices due to a loss of fill factor. Herein, the origin of this efficiency loss is investigated. It is found that a significant energetic barrier (≈250 meV) exists at the perovskite/organic BHJ interface. This interfacial barrier prevents efficient transport of photogenerated charge carriers (holes) from the BHJ layer to the perovskite layer, leading to charge accumulation at the perovskite/BHJ interface. Such accumulation is found to cause undesirable recombination of charge carriers, lowering surface photovoltage of the photoactive layers and device efficiency via fill factor loss. The results highlight a critical role of the interfacial energetics in such integrated cells and provide useful guidelines for photoactive materials (both perovskite and organic semiconductors) required for high‐performance devices.  相似文献   

13.
The influence of the hole transport layer on device stability in polymer:fullerene bulk‐heterojunction solar cells is reported. Three different hole transport layers varying in composition, dispersion solvent, electrical conductivity, and work function were used in these studies. Two water‐based hole transport layers, poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) and polyaniline:poly(styrene sulfonate), and one isopropyl alcohol‐based polyaniline:poly(styrene sulfonate) transport layer were investigated. Solar cells with the different hole transport layers were fabricated and degraded under illumination. Current–voltage, capacitance–voltage, and capacitance–frequency data were collected at light intensities of 16, 30, 48, 80, and 100 mW cm?2 over a period of 7 h. Device performance and stability were compared between nonencapsulated and encapsulated samples to gain understanding about degradation effects related to oxygen and water as well as degradation mechanisms related to the intrinsic instability of the solar cell materials and interfaces. It is demonstrated that the properties of the hole transport layer can have a significant impact on the stability of organic solar cells.  相似文献   

14.
With the emergence of ADA'DA-type (Y-series) non-fullerene acceptors (NFAs), the power conversion efficiencies (PCEs) of organic photovoltaic devices have been constantly refreshed and gradually reached 20% in recent years (19% for single junction and 20% for tandem device). The acceptors possess specific design concept, which greatly enrich the NFA types and have excellent compatibility with many donor materials. It is gratifying to note that the previously underperforming donor materials combine with these regulated acceptors to shine again. Nowadays, the concept of modular design is widely used in the research of acceptors and donors, injecting new vitality into the field of organic photovoltaics. Furthermore, these acceptors also promote the research of multicomponent devices, tandem devices, bilayer devices, processing solvent engineering, and additive engineering. Herein, the latest progresses of polymer solar cells with efficiency over 17% are briefly reviewed from the aspects of active material design, interface material development, and device technology. At last, the opportunities and challenges of organic photovoltaic commercialization in the future are discussed.  相似文献   

15.
Polymer‐based photovoltaic cells, with periodic sub‐micrometer structures as an efficient light‐trapping scheme, are investigated to improve the performance of organic solar cells based on poly(3‐hexylthiophene) and 1‐(3‐methoxycarbonyl)propyl‐1‐phenyl‐(6,6)C61. A soft lithographic approach that uses photoresponsive azo polymer films as masters and poly(dimethylsiloxane) as stamps is used to form surface relief gratings (SRGs) on the active layers. The effect of periodic gratings on solar cell performance is precisely investigated according to various grating conditions such as period, depth, and dimension. The solar cells with 1D and 2D SRGs present improved incident‐photon‐to‐current conversion efficiencies and an overall increase in power conversion efficiencies, primarily resulting from the enhancement of short‐circuit current density, indicating that periodic structures induce further photon absorption in the active film.  相似文献   

16.
To capture the essence of the rapid progress in optical engineering exploited in high‐performance polymer solar cells (PSCs), a comprehensive overview focusing on recent developments and achievements in PSC electrode engineering is provided in this review. To date, various kinds of electrode materials and geometries are exploited to enhance light‐trapping in devices through distinct optical strategies. In addition to the widely used nanostructured electrodes that induce plasmonic‐enhanced light absorption, planar ultra‐thin metal films also have attracted significant attention due to their remarkably reflective transparent properties that beget efficient optical microcavities. These microcavities confine incident light with resonant frequencies between two reflective electrodes due to optically coherent interference, boosting the light absorption of thin‐film PSCs while maintaining efficient charge dissociation and extraction. After reviewing the challenges in developing high‐performance microcavity‐enhanced PSCs (MCPSCs), we discuss strategies to improve MCPSC performance further to showcase the potential of harnessing microcavity resonance effects in thin‐film PSCs.  相似文献   

17.
Crystallizable, high‐mobility conjugated polymers have been employed as secondary donor materials in ternary polymer solar cells in order to improve device efficiency by broadening their spectral response range and enhancing charge dissociation and transport. Here, contrasting effects of two crystallizable polymers, namely, PffBT4T‐2OD and PDPP2TBT, in determining the efficiency improvements in PTB7‐Th:PC71BM host blends are demonstrated. A notable power conversion efficiency of 11% can be obtained by introducing 10% PffBT4T‐2OD (relative to PTB7‐Th), while the efficiency of PDPP2TBT‐incorporated ternary devices decreases dramatically despite an enhancement in hole mobility and light absorption. Blend morphology studies suggest that both PffBT4T‐2OD and PDPP2TBT are well dissolved within the host PTB7‐Th phase and facilitate an increased degree of phase separation between polymer and fullerene domains. While negligible charge transfer is determined in binary blends of each polymer mixture, effective energy transfer is identified from PffBT4T‐2OD to PTB7‐Th that contributes to an improvement in ternary blend device efficiency. In contrast, energy transfer from PTB7‐Th to PDPP2TBT worsens the efficiency of the ternary device due to inefficient charge dissociation between PDPP2TBT and PC71BM.  相似文献   

18.
Developing a fundamental understanding of the molecular order within the photoactive layer, and the influence therein of solution casting conditions, is a key factor in obtaining high power conversation efficiency (PCE) polymer solar cells. Herein, the molecular order in PBDB‐T:INPIC‐4F nonfullerene solar cells is tuned by control of the molecular organization time during film casting, and the crucial role of retarding the crystallization of INPIC‐4F in achieving high performance is demonstrated. When PBDB‐T:INPIC‐4F is cast with the presence of solvent vapor to prolong the organization time, INPIC‐4F molecules form spherulites with a polycrystalline structure, resulting in large phase separation and device efficiency below 10%. On the contrary, casting the film on a hot substrate is effective in suppressing the formation of the polycrystalline structure, and encourages face‐on π?π stacking of INPIC‐4F. This molecular transformation of INPIC‐4F significantly enhances the absorption ability of INPIC‐4F at long wavelengths and facilitates a fine phase separation to support efficient exciton dissociation and balanced charge transport, leading to the achievement of a maximum PCE of 13.1%. This work provides a rational guide for optimizing nonfullerene polymer solar cells consisting of highly crystallizable small molecular electron acceptors.  相似文献   

19.
The versatility of a fluoro‐containing low band‐gap polymer, poly[2,6‐(4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b’]dithiophene)‐alt‐4,7‐(5‐fluoro‐2,1,3‐benzothia‐diazole)] (PCPDTFBT) in organic photovoltaics (OPVs) applications is demonstrated. High boiling point 1,3,5‐trichlorobenzene (TCB) is used as a solvent to manipulate PCPDTFBT:[6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) active layer morphology to obtain high‐performance single‐junction devices. It promotes the crystallization of PCPDTFBT polymer, thus improving the charge‐transport properties of the active layer. By combining the morphological manipulation with interfacial optimization and device engineering, the single‐junction device exhibits both good air stability and high power‐conversion efficiency (PCE, of 6.6%). This represents one of the highest PCE values for cyclopenta[2,1‐b;3,4‐b’]dithiophene (CPDT)‐based OPVs. This polymer is also utilized for constructing semitransparent solar cells and double‐junction tandem solar cells to demonstrate high PCEs of 5.0% and 8.2%, respectively.  相似文献   

20.
The influences of morphology and thickness of zinc oxide (ZnO) buffer layers on the performance of inverted polymer solar cells are investigated. ZnO buffer layers with different morphology and thickness varying from several nanometers to ≈55 nm are fabricated by adjusting the concentration of the precursor sol. The ZnO buffer layers with nearly same surface quality but with thickness varying from ≈7 to ≈65 nm are also fabricated by spinning coating for comparison. The photovoltaic performance is found to be strongly dependent on ZnO surface quality and less dependent on the thickness. The use of dense and homogenous ZnO buffer layers enhances the fill factor and short‐circuit current of inverted solar cell without sacrificing the open‐circuit voltage of device due to an improvement in the contact between the ZnO buffer layer and the photoactive layer. Inverted devices with a dense and homogenous ZnO buffer layer derived from 0.1 M sol exhibit an overall conversion efficiency of 3.3% which is a 32% increase compared to devices with a rough ZnO buffer layer made from 1 M sol, which exhibited a power conversion efficiency of 2.5%. The results indicate that the efficiency of inverted polymer solar cells can be significantly influenced by the morphology of the buffer layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号