首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrical properties of injection molded composite systems based on a polypropylene matrix and two types of carbonaceous fillers—carbon black (CB) and carbon fibers (CF)—were investigated. In addition to conductivity as a function of system compositions, conductivity profiles were studied. Inhomogeneous spatial distribution of CB particles in moldings containing either CB as a single filler or in combination with CF was found. Furthermore, unexpected fiber orientation transverse to the melt flow direction and disappearance of skin‐core orientation pattern, typical for injection molded fiber filled composites, were observed in the two filler samples. An amplification of the shear‐thinning behavior, characteristic for the polypropylene (PP) matrix, imposed by the inhomogeneity of the CB distribution resulting in flattening of the advancing melt front and velocity profile is suggested as underlying the observed phenomena. POLYM. COMPOS., 26:454–464, 2005. © 2005 Society of Plastics Engineers  相似文献   

2.
In this article, the electrical conductivity of composites with different ratios of carbon fiber (CF) content to carbon black (CB) content was studied. The CF content is the main factor to determine the resistivity of the composites filled with CF and CB. The conduction mechanism for this kind of composite is discussed. From comparison of the resistivity of the composites filled with CF and CB with that of the composites filled with CF only, it is shown that using CB as a substitute for part of the CF in CF-filled composites can decrease the production cost, but hardly change the conductivity. The optimum substitution amount is 5% when CF content is beyond 10% in the composites. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
The influences of carbon black (CB) structure on the percolation threshold, mechanical properties, and strain‐resistivity response of polymer composites are studied. Low‐density polyethylene (LDPE) and polypropylene (PP) samples were blended with five different types of CB differing in structure. Relatively low strains were studied; the maximum strain was 10%. It was found that the CB concentration for maximum strain‐sensitivity of the electrical conductivity is higher for low structure carbon blacks but is essentially independent of the CB structure for medium‐ to high‐structure carbon blacks. However, the composite containing the largest particle size carbon black clearly showed the highest strain‐sensitivity to electrical conduction. The mechanical properties and sensitivity of electrical resistivity to tensile strain of the filled composites examined in the study are also presented and discussed. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

4.
The electrical conductivity and percolation threshold of single and hybrid carbon filled composites are experimentally investigated. Polystyrene, carbon fiber (CF) and carbon black (CB) at three CF/CB ratios of 1.67, 3.33, 6.67 were compounded in a twin screw extruder micro‐compounder and compression molded into sheets. The through‐plane and in‐plane electrical conductivity of the composites are measured by 2 and 4 probe techniques. The percolation threshold of the single filler and hybrid composites are determined from the experimental results using a percolation model. The hybrid composites have a higher value of electrical conductivity and lower percolation threshold than the single CF filler composite except for the CF/CB ratio of 6.67. The percolation threshold for the cases of single filler and hybrid composites are modeled. The hard core / soft shell model is used and it is assumed that the percolation in a particle filled system depends on the ratio of tunneling distance to particle diameter. This ratio is determined by modeling single filler composites using the experimental data and kept constant in the modeling of the hybrid system. Finite size scaling is used to determine the percolation threshold for the infinite size hybrid system containing (nanosize) particles and micron size fibers for three CF/CB ratios. The simulation results show that the percolations of hybrid composites have the same trends observed in the experimental results. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41744.  相似文献   

5.
Electrically conducting rubbery composites based on thermoplastic polyurethane (TPU) and carbon nanotubes (CNTs) were prepared through melt blending using a torque rheometer equipped with a mixing chamber. The electrical conductivity, morphology, rheological properties and electromagnetic interference shielding effectiveness (EMI SE) of the TPU/CNT composites were evaluated and also compared with those of carbon black (CB)‐filled TPU composites prepared under the same processing conditions. For both polymer systems, the insulator–conductor transition was very sharp and the electrical percolation threshold at room temperature was at CNT and CB contents of about 1.0 and 1.7 wt%, respectively. The EMI SE over the X‐band frequency range (8–12 GHz) for TPU/CNT and TPU/CB composites was investigated as a function of filler content. EMI SE and electrical conductivity increased with increasing amount of conductive filler, due to the formation of conductive pathways in the TPU matrix. TPU/CNT composites displayed higher electrical conductivity and EMI SE than TPU/CB composites with similar conductive filler content. EMI SE values found for TPU/CNT and TPU/CB composites containing 10 and 15 wt% conductive fillers, respectively, were in the range ?22 to ?20 dB, indicating that these composites are promising candidates for shielding applications. © 2013 Society of Chemical Industry  相似文献   

6.
The electrical properties of carbon black (CB)‐filled two‐phased thermoplastic vulcanizates (based on ethylene‐propylene‐diene copolymer and polypropylene, TPV) were investigated in this article. The results showed that the composites had a singularity in electrical conductivity compared with CB‐filled polypropylene composites. Both the loading of CB and the concentration of rubber phase in TPV had the remarkable effect on electrical property of composites. The rubber particles in TPV presented unique and competitive effects in constructing CB electrical conducting network, namely exclusion and block effects. The percolation threshold value of composites apparently decreased with rubber phase content. However, percolation behavior of composites was weakened when rubber phase content was very high. The percolation behavior of composites with loading of CB is weakened apparently by rubber particles. When annealing the composites in the melt state, the resistance‐time dependence of composites was strongly affected by the pressure of mold annealing. Although air aging had a negligible effect on the electrical properties, the microstructure of the CB/TPV composites had changed during air aging. CB/TPV composite only exhibited the negative temperature coefficient behavior even though the temperature was in the melting region of polypropylene, which was mainly attributed to the exclusive effect brought by the thermal expansion of rubber particles. The special electrical properties of CB/TPV can find potential application in many fields. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
The objective of this work is to study the effect of electrical conductivity and physical‐mechanical properties of carbon black (CB) filled polymer composites. This goal is achieved by synthesizing epoxy/silicon phase separated blend structure of composites filled with CB. The percolation threshold of epoxy/silicone/CB composites decreased and the total conductivity increased compared to the pure epoxy/CB composite. A threefold increase was obtained with tensile strength of epoxy/silicone/CB composite with 25 wt% of silicone and 5 wt% of CB in comparison with epoxy/CB systems. This composite has conductivity of about 10−6 S/cm, which is six orders of magnitude higher than for epoxy/CB composites at the same concentration of CB. POLYM. COMPOS., 35:2234–2240, 2014. © 2014 Society of Plastics Engineers  相似文献   

8.
In this study, conductive epoxy foams with different carbon black (CB) contents were fabricated with expandable microspheres as foaming agents. The effect of the CB content, microsphere concentration, precuring time, and foaming temperature on the electrical conductivity and compressive properties of the obtained foams were investigated systematically. The differential scanning calorimeter and rheological tests confirmed that the CB accelerated the curing reaction, increased the onset viscosity of the epoxy blend during foaming, and affected the foaming process. In addition, all of the parameters, including the CB content, microsphere concentration, precuring time, and foaming temperature, were confirmed to change the foam structures and further change the conductivity and mechanical properties. The electrical properties test revealed that the foaming process improved the conductivity of the composites. On the basis of the electrical properties test results and scanning electron microscope images, a flow‐induced CB aggregation mechanism is presented, in which the thermally triggered microsphere expansion pushed the resins away, squeezed the CB together, and changed the CB distribution throughout the foams. This made more conductivity paths. The obtained foam could just be used as an antistatic material, but it gave us an example for exploring lightweight and low‐cost conductive epoxy foams with other applications, for example, electromagnetic shielding. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45071.  相似文献   

9.
Krishna C. Etika 《Carbon》2009,47(13):3128-3136
Studies of acetone-based suspensions suggest a synergistic stabilization of clay by carbon black (CB) that involves a haloing effect (i.e., CB surrounding clay). This unique microstructural development ultimately influences the electrical and mechanical properties of epoxy composites that contain both particles. With the addition of 0.5 wt.% clay, electrical conductivity increases by an order of magnitude for CB filled epoxy (relative to composites containing no clay), but no significant improvement is observed in storage modulus. Composites containing equal concentrations of CB and clay show reduced electrical conductivity, but significant improvement in storage modulus (relative to the composites containing equal amount (wt.%) of either CB or clay alone). Both electrical conductivity and storage modulus improve in composites containing a 1:2 clay:CB (wt/wt) ratio. This synergy between CB and clay is a useful tool for simultaneously improving the electrical and mechanical properties of solution-processed composites.  相似文献   

10.
Titanate coupling agent (TCA) is widely used as a plasticizer in filled polymer processes. In this study, the effect of TCA with different contents (2 and 10 wt %) on the electrical conductivity, wave absorption, and mechanical properties of carbon black (CB)/acrylonitrile–butadiene–styrene (ABS) composites were investigated. The results indicate that with the addition of 2 wt % TCA to the filled CB, the electrical conductivity of CB/ABS composites improved greatly, but its wave absorption performance was weakened. In contrast, the addition of 10 wt % TCA to the filled CB improved the microwave absorption performance of the CB/ABS composites but led to poor electrical conductivity. However, TCA, regardless of the contents of 2 or 10 wt %, greatly improved the mechanical properties of the composites. The probable reasons for this are discussed on the basis of the fracture morphology of the sample, a chemical band between the filling and resin, and the physical coating between the filling and TCA. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1839–1843, 2006  相似文献   

11.
In this study, a polar conductive filler [carbon black (CB)], a nonpolar polymer [polypropylene (PP)], and a polar polymer [nylon 6 (PA6)] were chosen to fabricate electrically conductive polymer composites by melt blending and compression molding. The morphological developments of these composites were studied. Scanning electron microscopy results showed that in a CB‐filled PP/PA6 (CPA) composite, CB particles were selectively dispersed in PA6 phases and could make the dispersed particles exist as microfiber particles, which could greatly improve the electrical conductivity. The PA6 and CB contents both could affect the morphologies of these composites. The results of electrical resistivity measurements of these composites proved the formation of conductive networks. The resistivity–temperature behaviors of these composites were also studied. For CB‐filled PP (CP) composites, there were apparent positive temperature coefficient (PTC) and negative temperature coefficient (NTC) effects and an unrepeatable resistivity–temperature characteristic. However, for CPA composites, there were no PTC or NTC effects from room temperature to 180°C, and the resistivity–temperature behavior showed a repeatable characteristic; this proved that CB particles were selectively dispersed in the PA6 phase from another point of view. All experimental results indicated that the addition of PA6 to a CP composite could lead to an expected morphological structure and improve the electrical conductivity of the CP composite. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
Polyethylene (PE) composites filled with carbon black (CB) were prepared using an internal mixer. Several analytical techniques, including rheometry, gel permeation chromatography, electrical conductivity measurements, differential scanning calorimetry, wide‐angle X‐ray diffraction, and transmission electron microscopy (TEM), were used to reveal the structural variations, thermal degradation, morphological features, and crystallization of the PE/CB conductive composites. It was found that the PE polymer chains were degraded, forming long‐chain branching structures after over 30 min of internal mixing. The electrical conduction of the PE/CB composites was determined by the filler content and distribution. The electrical percolation threshold of the PE/CB composites was determined to be between 20 and 30 wt %. The addition of CB had no significant influence on the crystallinity of the PE/CB composites. In contrast, the electron‐beam radiation dose had a significant effect on crystallinity. TEM micrographs of the PE/CB composites exhibit a random four‐phase morphology, including PE lamellae, PE amorphous, CB particles, and voids at the PE/CB interface. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1038‐1046, 2013  相似文献   

13.
Chemical sensing materials based on conductive carbon black (CB) filled [styrene‐ethylene butylene‐styrene] triblock‐copolymers (SEBS) were investigated. Several types of SEBS copolymers were studied, differing in composition and melt viscosity. The sensing is based on electrical conductivity changes upon solvent sorption/desorption. Compression molding SEBS composites containing various amounts of CB were prepared. Their electrical conductivity was measured and samples containing CB, preferentially located in the continuous ethylene/butylene (EB) phase, at a level near the corresponding percolation threshold were used for the sensing experiments. The conductivity was measured during several exposure/drying cycles. Structure characterization included scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), and calorimetry (DSC). The SEBS composites exhibit large reversible changes in conductivity upon exposure to a limited number of solvents, e.g., acetone, n‐heptane, and air drying cycles. This behavior was related to the sorption kinetics, affected by the solvent characteristics (solubility parameter, polarity, molecular volume and vapor pressure). The samples' resistance tended to return to their initial value upon short drying of acetone, and longer drying of other studied solvents. The nature of the SEBS, the CB content, and mixing temperature are all significant parameters, determining the sample's structure and the resultant sensing property. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Adding conductive carbon fillers to thermoplastic polymers increases the resulting composite's electrical conductivity. Carbon black (CB) is very effective at increasing composite electrical conductivity at low loading levels. In this study, varying amounts (2 to 10 wt %) CB were added to polycarbonate (PC) and the resulting composites were tested for electrical conductivity (1/electrical resistivity), thermal conductivity, and tensile and flexural properties. These results were compared with prior work done for carbon nanotubes (CNT) in polycarbonate. The percolation threshold was ~ 2.3 vol % CB compared to between 0.7 and 1.4 vol % CNT. At 8 wt % filler, the CNT/PC composite had an electrical resistivity of 8 ohm‐cm compared to 122 ohm‐cm for the CB/PC composite. The addition of CB to polycarbonate increased the composite electrical and thermal conductivity and tensile and flexural modulus. The 8 wt % (5.5 vol %) CB in polycarbonate composite had a good combination of properties for semiconductive applications. Ductile tensile behavior is noted in pure polycarbonate and in samples containing up to 8 wt % CB. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
This paper reports results on experimental investigation of the conductivity behavior of carbon fiber filled polymer composites at the percolation threshold. Two types of carbon fiber‐epoxy matrix composites have been studied and comparison of the measured data has been made. These two types of composites differ in the surface modification of carbon fibers (in one case the surface of carbon fibers is covered with polymer beads using the microencapsulation technology, in the other their surface stayed unmodified). Experimental data reveal that surface modification of carbon fibers influences greatly the DC conductivity (percolation threshold moves to higher concentrations) but does not influence the AC electrical properties. From the frequency dependence of conductivity upon fiber concentration it becomes clear that it is not possible to predict the high frequency conductivity (electromagnetic interference shielding properties) based on the DC conductivity. Percolation behavior of conductivity as a function of conductive filler concentration is typical only for DC or low frequency AC conductivity. The percolation threshold gradually vanishes for high frequencies of electromagnetic field. The temperature dependence of electrical properties has also been studied. Composites with concentration near the percolation threshold show the switch‐off effect (at the specific temperature the DC conductivity drops by several orders of magnitude). This switch‐off effect does not occur for high frequency AC conductivity.  相似文献   

16.
Multiphase polymer blends provide unique morphologies to reduce the percolation concentration and increase conductivity of carbon‐based polymer composites via selective distribution of the conductive filler. In this work, the kinetic and thermodynamic effects on a series of multiphase conductive polymer composites were investigated. The electrical conductivity of carbon black (CB)‐filled conductive polymer blend composites comprising polypropylene, poly(methyl methacrylate), and ethylene–acrylic acid were determined as a function of compounding sequence and annealing time. Kinetic and thermodynamic parameters were found to influence the conductivity. Phase morphology and conductivity at short annealing times were influenced by the compounding sequence where the CB was added after being premixed with one of the polymer components or directly added to the three‐component polymer melt. However, they were thermodynamically driven at longer annealing times; the resistivity was found to decrease by a statistically significant amount to similar levels for all the composite systems with increasing annealing time. The increase in conductivity at longer annealing times was determined to be the result of changes in the phase morphology from sea‐island, dispersed microstructure to a tri‐continuous morphology rather than change in localization of CB, given that the CB was found to be entirely located in the EAA phase even at short annealing times (and independent of compounding sequence), where the conductivity was not measurable. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42134.  相似文献   

17.
This work evaluates the influence of two types of carbonaceous fillers, carbon black (CB) and carbon nanotubes (CNTs), on the electrical, electromagnetic, and rheological properties of composites based on poly(acrylonitrile‐co‐butadiene‐co‐styrene) (ABS) prepared by the melt mixing. Electrical conductivity, electromagnetic shielding efficiency (EMI SE) in the X‐band frequency range (8–12.4 GHz), and melt flow index (MFI) results showed that ABS/CNT composites exhibit higher electrical conductivity and EMI SE, but lower MFI when compared to ABS/CB composites. The electrical conductivity of the binary composites showed an increase of around 16 orders of magnitude, when compared to neat ABS, for both fillers. Binary composites with 5 and 15 wt % of filler showed an EMI SE of, respectively, ?44 and ?83 dB for ABS/CNT, and ?9 and ?34 dB for ABS/CB. MFI for binary composites with 5 wt % were 15.45 and 0.55 g/10 min for CB and CNT, respectively. Hybrid composites ABS/CNT.CB with 3 wt % total filler and fraction 50:50 and 75:25 showed good correlation between EMI SE and MFI. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46546.  相似文献   

18.
Conducting composites were prepared by melt mixing of ethylene–propylene–diene terpolymer (EPDM) or styrene‐butadiene rubber (SBR) and 35 wt % of carbon black (CB). Stability of electrical properties of rubber/CB composites during cyclic thermal treatment was examined and electrical conductivity was measured in situ. Significant increase of the conductivity was observed already after the first heating–cooling cycle to 85°C for both composites. The increase of conductivity of EPDM/35% CB and SBR/35% CB composites continued when cyclic heating‐cooling was extended to 105°C and 125°C. This effect can be explained by reorganization of conducting paths during the thermal treatment to the more conducting network. EPDM/35% CB and SBR/35% CB composites exhibited very good stability of electrical conductivity during storage at ambient conditions. The electrical conductivity of fresh prepared EPDM/35% CB composite was 1.7 × 10−2 S cm−1, and slightly lower conductivity value 1.1 × 10−2 S cm−1 was measured for SBR/35% CB. The values did not significantly change after three years storage. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
The development of flexible and compliant conductive polymer composites with textile‐like characteristics remains an important endeavor in light of the recent activity in polymer/textile‐based electronics and the need for compliant electrodes for electroactive polymer actuators. In this work, carbon black (CB) was dispersed in a polymer solution to form electrospun fiber webs consisting mainly of nanofibers. The effect of the filler content on the fiber‐web morphology, mechanical behavior, electrical conductivity, and thermal resistance was examined. The electrical conductivity percolation threshold of the fiber‐web structure was found to be around 4.6 vol %. Scanning electron micrographs of the fiber webs revealed a significant influence of the CB content on the fiber formation as well as the bond structure of the fiber web, which influenced the mechanical properties of the web. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2410–2417, 2007  相似文献   

20.
The electrical conductivity, current-voltage characteristics and morphology of carbon black–filled immiscible blends of poly(vinylidene fluoride)(PVDF) and high density polyethylene (HDPF) were investigated. Carbon black (CB) had stronger affinity to HDPE than to PVDF, resulting in its selective localization in the HDPE phase. The CB content and PVDF/HDPE volume ratio were the two main factors influencing the electrical conductivity, current-voltage characteristics, and morphology. At a fixed PVDF/HDPE volume ratio of 1/1, a percolation threshold of 0.037 volume fraction of CB was observed, and that value was much lower than that for conventional CB-filled polymer composites. At a fixed CB content (10 wt% CB), a maximum electrical conductivity was observed at a PVDF/HDPE volume ratio of 2.75. An increase in CB content in the composites with a fixed PVDF/HDPE volume ratio (1/1) and an increase in PVDF content in composites with a fixed CB content (10 wt%) greatly decreased the domain size of the PVDF phase. A positive-temperature-coefficient effect was used to determine the location of CB in the blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号