首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel water‐soluble colored polymer, based on 1,8‐naphthalimide, was synthesized through a series of easy reactions with high yields. It emitted green fluorescence both in an aqueous solution and in a solid state. Fluorescence characteristics of the polymer as a function of pH were investigated in aqueous solutions. The polymer solution showed weaker fluorescence in a more acidic medium. When the pH of the solution was higher than 5, stronger fluorescence could be seen with a pKa value of 3.5. The presence of metal cations (Mn2+, Fe3+, Co2+, Ni2+, Cu2+, and Zn2+) could quench the fluorescence intensity of an aqueous solution of this polymer to different levels. It was highly sensitive to Cu2+ and Fe3+ present in the studied system. The results suggest that this newly synthesized compound could work as a polymeric sensor responding to water polluted by Cu2+, Fe3+, and protons. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
A chemical sensor for methyl viologen (MV2+), based on a water‐soluble conjugated polymer/single‐walled carbon‐nanotube (SWNT) composite, was fabricated. Water‐soluble poly(m‐phenylene ethynylene) with sulfonic acid side‐chain groups (mPPE‐SO3) was synthesized via a Pd‐catalyzed Sonogashira coupling reaction and used to prepare a highly stable mPPE‐SO3/SWNT composite with strong π–π interactions in water. The relationship between the optical properties and sensing capability of the mPPE‐SO3/SWNT composite in aqueous solution was investigated. The addition of MV2+ enhanced the fluorescence intensity of the mPPE‐SO3/SWNT composite by inducing a conformational change of the polymer from a helical to a random‐coil structure. The water‐soluble mPPE‐SO3/SWNT composite enabled highly sensitive fluorescence detection of MV2+ in aqueous solutions with no precipitation resulting from reaggregation of the SWNTs. This mPPE‐SO3/SWNT composite sensor system is therefore an effective turn‐on chemical sensor for MV2+. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43301.  相似文献   

3.
BACKGROUND: The hydrophobic phenyl n‐propyl ketone was used as a model compound to examine alcohol dehydrogenase activity in Saccharomyces cerevisiae mediated cell culture. Parameters such as pH, hexane‐to‐water volume percentage, and the amount of cofactor Zn2+ ion for either cell growth or reduction were studied to see their effect on the enantioselectivity toward the product R‐(+)‐ or S‐(?)‐1‐phenyl‐1‐butanol. RESULTS: The pH for cell growth in aqueous culture was 7.0, while the pH for reduction in the aqueous portion of the biphasic culture was 5.0. Without Zn2+ ion the biphasic cultures of middle to high hexane‐to‐water volume percentage exhibited an R‐(+)‐1‐phenyl‐1‐butanol enantiomeric excess of 53.7% to > 99%. Without Zn2+ ion the biphasic cultures at low hexane‐to‐water volume percentage possessed an S‐(?)‐1‐phenyl‐1‐butanol enantiomeric excess of 14.5–46.5%. Exclusively, the enantioselectivity for biphasic cultures containing Zn2+ ion was an S‐(?)‐1‐phenyl‐1‐butanol enantiomeric excess of 27.5% to > 99%. Reduction mediated in aqueous culture with varied amount of Zn2+ ion by the yeast Candida utilis also showed an S‐(?)‐1‐phenyl‐1‐butanol enantiomeric excess of 79.2–95.4%. CONCLUSION: The enantioselectivity of S. cerevisiae mediated biphasic culture reduction of phenyl n‐propyl ketone can be manipulated through the cofactor Zn2+ ion and the hexane volume percentage of the biphasic culture. Copyright © 2008 Society of Chemical Industry  相似文献   

4.
A chiral conjugated polymer can be obtained by the polymerization of (S)‐6,6′‐dibromo‐2,2′‐binaphtho‐20‐crown‐6 and 1,4‐divinyl‐2,5‐dibutoxybenzene via a palladium‐catalyzed Heck cross‐coupling reaction. The chiral conjugated polymer shows strong green‐blue fluorescence. The responsive properties of the chiral polymer to metal ions were investigated using fluorescence and UV‐visible absorption spectra. K+, Pb2+, Cd2+ and Ba2+ enhance the fluorescence of the polymer; in contrast, Hg2+ causes effective quenching of the fluorescence of the polymer. The obvious influences on the fluorescence indicate that the 2,2′‐binaphtho‐20‐crown‐6 moiety plays an important role in fluorescence recognition for Hg2+ due to the effective photo‐induced electron transfer or charge transfer between the conjugated polymer backbone and the receptor ions. The responsive properties of the polymer to metal ions show that the chiral conjugated polymer incorporating 2,2′‐binaphtho‐20‐crown‐6 moieties in the main‐chain backbone as recognition sites can act as an excellent fluorescent probe for the sensitive detection of Hg2+. Copyright © 2010 Society of Chemical Industry  相似文献   

5.
Poly(2‐acrylamido glycolic acid‐co‐2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid) [P(AGA‐co‐APSA)] was synthesized by radical polymerization in an aqueous solution. The water‐soluble polymer, containing secondary amide, hydroxyl, carboxylic, and sulfonic acid groups, was investigated, in view of their metal‐ion‐binding properties, as a polychelatogen with the liquid‐phase polymer‐based retention technique under different experimental conditions. The investigated metal ions were Ag+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Pb2+, and Cr3+, and these were studied at pHs 3, 5, and 7. P(AGA‐co‐APSA) showed efficient retention of all metal ions at the pHs studied, with a minimum of 60% for Co(II) at pH 3 and a maximum close to 100% at pH 7 for all metal ions. The maximum retention capacity (n metal ion/n polymer) ranged from 0.22 for Cd2+ to 0.34 for Ag+. The antibacterial activity of Ag+, Cu2+, Zn2+, and Cd2+ polymer–metal complexes was studied, and P(AGA‐co‐APSA)–Cd2+ presented selective antibacterial activity for Staphylococcus aureus with a minimum inhibitory concentration of 2 μg/mL. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
Biodegradable poly[(2‐methacryloyloxyethyl phosphorylcholine)‐block‐(D ,L ‐lactide)] (PMPC‐b‐PLA) diblock copolymers with various hydrophilic PMPC weight fractions (fPC) will spontaneously self‐assemble into well‐defined vesicles and large compound micelles (LCMs) in water. Transmission electron microscopy, scanning electron microscopy, dynamic light scattering and fluorescence microscopy were used to observe their aggregate morphologies. The degradation of the LCMs was investigated and the loss of molecular weight of PLA blocks was confirmed using 1H NMR analysis. The hydrolysis of PLA increases fPC and consequently shifts the preferred morphology from LCMs to vesicles. Such degradation‐induced morphological transitions mean that the biocompatible and biodegradable LCMs have great application potential in drug delivery. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
A water‐soluble supramolecular‐structured photoinitiator (SSPI) was synthesized by supramolecular self‐assembling between methylated β‐cyclodextrin (MβCD) and hydrophobic 2,2‐dimethoxy‐2‐phenylacetophenone (DMPA). The structure of SSPI was characterized by X‐ray diffraction, FTIR, 1H NMR, UV–vis, and fluorescence spectra. The results indicated that MβCD and DMPA had formed 1 : 1 inclusion complex in methanol solution. The binding constant (K) for the complex was 7.51 × 102M?1. SSPI could be dissolved in water easily and its water‐solubility was 15.3 g/100 mL. SSPI was the more efficient photoinitiator than DMPA for the photopolymerization of acrylamide (AM) in homogeneous aqueous system. The conversion for photopolymerization of trimethylolpropane triacrylate system initiated by SSPI was similar to that initiated by DMPA. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

8.
The new red‐emitting phosphors of Eu3+‐doped triple orthovanadates NaALa(VO4)2 (= Ca, Sr, Ba) were prepared by the high‐temperature solid‐state reaction. The formation of single phase compound with isostructural structure of Ba3(VO4)2 was verified through X‐ray diffraction (XRD) studies. The photoluminescence excitation and emission spectra, the fluorescence decay curves and the dependence of luminescence intensity on doping level were investigated. The phosphor can be efficiently excited by near UV and blue light to realize an intense red luminescence (613 nm) corresponding to the electric dipole transition 5D07F2 of Eu3+ ions. Their potential applications as red‐emitting phosphors for solid‐state lighting were evaluated in comparison with the Eu3+‐doped lanthanum orthovanadate LaVO4 and other reported references. The luminescence was discussed in detail on the base of the crystal structures. The luminescence thermal stability on temperature was investigated and the thermal activated energy was calculated. The phosphors can be suggested to be a potential red‐emitting phosphor for the application on white LEDs under irradiation of near‐UV or blue chips.  相似文献   

9.
The surface oxygen content of selected wood‐based phosphoric acid‐activated carbons was quantified using X‐ray photoelectron spectroscopy (XPS) and correlated with the residual bulk phosphate levels of the carbons and their adsorptivity in solution. The adsorption of Al3+, Cu2+, and para‐chlorophenol, respectively, from water decreased as a function of increasing surface oxygen content of the carbons. When the carbon of lowest surface oxygen content was oxidized with ozone to impart a surface oxygen content comparable to that of a carbon with a much higher phosphate level, adsorption of Al3+, Cu2+, and para‐chlorophenol from water decreased proportionally. The increase in polarity of the carbon surface was accompanied by a decrease in pH and appeared to be the dominant factor with respect to the adsorption of the target species from water. Copyright © 2005 Society of Chemical Industry  相似文献   

10.
Novel hexa‐armed dansyl end‐capped poly(ε‐caprolactone) (PCL) star polymer with phosphazene core ( P2 ) was prepared via ring opening polymerization (ROP) and esterification reactions. P2 showed dual fluorescence emission when excited at 328 nm in acetonitrile : water (6 : 4) due to twisted intramolecular charge transfer (TICT) between dimethylamino and naphthalene units in the dansyl moiety. TICT emission band (A band) in the emission spectra red‐shifted with increasing solvent polarity. P2 responded to the addition of Pb2+, Hg2+, Co2+, Cd2+, Mn2+, and Zn2+ metal ions by decreasing TICT emission band with slight bathochromic shifts. The highest quenching efficiency was observed for Pb2+ ion with Stern–Volmer constant of 324.74M?1. The Stern–Volmer plot for Pb2+ was rather linear with the increasing concentration of the quencher, indicating a dynamic (collisional) quenching mechanism. Stern–Volmer constants for Hg2+, Co2+, Cd2+, Mn2+, and Zn2+ ions were found to be 212.33, 189.21, 36.24, 20.84, and 20.69, respectively. Besides, the highest quenching efficiency (94.24%) was attained in the presence of Pb2+, suggesting that P2 could be employed as a potential Pb2+ chemical probe. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42380.  相似文献   

11.
The copolymers of (Z)‐4‐oxo‐4‐phenoxyl‐2‐butenoic acid with styrene (PSt/OPBA) and their macromolecular luminous lanthanide complexes (Ln‐PSt/OPBA) have been synthesized and characterized by means of GPC, elemental analysis, FTIR, X‐ray powder diffraction, spectral analysis, and thermal analysis. The IR studies showed that the carboxylic groups on the side chain of the polymer were coordinated to lanthanide ions by bidentate manner. However, the ethereal oxygen, instead of carbonyl, also bonded to the central lanthanide ions, which was an intriguing phenomenon for ester‐coordinated complexes. X‐ray diffraction experiments revealed that these PSt/OPBA copolymers were amorphous, but Ln‐PSt/OPBA were crystalline, in which the complex Eu‐Lc belonged to a high symmetric structure of orthorhombic quadratic system, with a = 10.59 ± 0.02 Å, c = 8.02 ± 0.01 Å; c/a = 0.763. In addition, the value δ (the number of free carboxylic groups) in Ln‐PSt/OPBA complexes increased with the decreasing mole ratio of styrene in the copolymers, while it decreased with increasing pH values of the solution. Eu3+ and Tb3+ complexes exhibited characteristic fluorescence with comparatively high brightness and good monochromaticity, and the fluorescence intensity was enhanced with increasing the content of lanthanide up to around 18 wt % without typical fluorescence concentration quenching behavior in the solid state. So using polymers as a matrix, Ln‐PSt/OPBA are likely to provide new materials that possess specific properties and desired features. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
A series of unsaturated polyester (UPR)‐co‐rare‐earth complex (REX) photoluminescence materials with red and green luminescence were fabricated. REXs with double bonds, including complex of europium (Eu3+) (methacrylic acid)3 and 1,10‐phenanthroline (Phen) [Eu(MAA)3Phen], and complex of terbium (Tb3+)(methacrylic acid)3 and Phen [Tb(MAA)3Phen], and UPR acted as functional monomers and the polymer matrix, respectively. Fourier transform infrared and UV absorption spectroscopy confirmed the chemical structure of the resulting UPR‐co‐REX according to the free‐radical polymerization mechanism. The study of fluorescence distribution by means of laser scanning confocal microscopy indicated that the REX materials were uniformly dispersed in the UPR matrix. The effects of the type and dosage of REX on the fluorescence intensity and stability were examined via fluorescence spectrometry. We found that the optical/physical properties of the REX were improved by UPR molecular skeleton structures. The fluorescence intensity increased with increasing use of the REX and reached a maximum value when the REX content was 12 wt %. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45253.  相似文献   

13.
Some aspects of the enol‐imine to keto‐enamine photoisomerism and fluorescent behavior of the new monomer with urethane and anil units in its structure, namely, methacryloyloxyethyl‐2‐carbamoyloxy(m‐methyl, o‐hydroxybenziliden)aniline (UAN), were studied comparatively with the corresponding copolymer poly (methacryloyloxyethyl‐2‐carbamoyloxy(m‐methyl, o‐hydroxybenziliden)aniline)‐co‐methyl methacrylate) (COP‐UAN). The structure, thermal properties, and morphology of the anil compounds were investigated by Fourier transform infrared, proton nuclear magnetic resonance, fluorescence spectroscopies, UV spectrophotometry, thermogravimetric analysis, differential scanning calorimetry, and atomic force microscopy. The photochromic behavior of salicylideneanil units was investigated by UV/laser irradiation, and an inspection of their photophysical properties suggested that such structures could function as fluorescent chemosensors for some transition metals, a fluorescence quenching in the presence of different metal cations (Fe3+, Fe2+, Cu2+, and Ni2+) being evidenced. The direct observation of an enhancement in the fluorescence emission caused of the presence of Zn2+ (solution) or Fe2+, Cu2+, and Zn2+ (thin film) would be rather suitable for the production of turn‐on fluorescent chemosensors. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

14.
Herein, a series of Eu2+&Mn2+substituted fluorophosphates Ca6Gd2Na2(PO4)6F2 phosphor with apatite structure have been synthesized and investigated by the powder X‐ray diffraction, photoluminescence spectra, fluorescence decay curves, thermal quenching, and chromaticity properties. Particularly, both Eu2+ and Mn2+ emissions at the two different lattice sites 4f and 6h in Ca6Gd2Na2(PO4)6F2 matrix have been identified and discussed. The dual energy transfer of Eu2+→Mn2+ and Gd3+→Mn2+ in Ca6Gd2Na2(PO4)6F2:Eu2+,Mn2+ samples have been validated and confirmed by the photoluminescence spectra. The dependence of color‐tunable on the activator concentration of Mn2+ was investigated to realize white light emission. By varying the doping concentration of the Mn2+ ion, a series of tunable colors including pure white light and candle light are obtained under the excitation of 350 nm. Moreover, the fluorescence decay curves have been fitted and analyzed using the Inokuti–Hirayama theoretical model to estimate the Eu–Mn interaction mechanism. We also investigated temperature‐dependent photoluminescence quenching characteristics according to the Arrhenius equation. Preliminary studies on the properties of the phosphor indicated that the obtained phosphors might have potential application as a single‐component white‐emitting phosphor for UV‐based white LEDs.  相似文献   

15.
Rare‐earth‐doped ceramic nanophosphor (RED‐CNP) materials are promising near‐infrared (NIR) fluorescence bioimaging (FBI) agents that can overcome problems of currently used organic dyes including photobleaching, phototoxicity, and light scattering. Here, we report a NIR–NIR bioimaging system by using NIR emission at 1550 nm under 980 nm excitation which can allow a deeper penetration depth into biological tissues than ultraviolet or visible light excitation. In this study, erbium‐doped yttrium oxide nanoparticles (Er3+:Y2O3) with an average particle size of 100 and 500 nm were synthesized by surfactant‐assisted homogeneous precipitation method. NIR emission properties of Er3+:Y2O3 were investigated under 980 nm excitation. The surface of Er3+:Y2O3 was electrostatically PEGylated using poly (ethylene glycol)‐b‐poly(acrylic acid) (PEG‐b‐PAAc) block copolymer to improve the chemical durability and dispersion stability of Er3+:Y2O3 under physiological conditions. In vitro cytotoxic effects of bare and PEG‐b‐PAAc‐modified Er3+:Y2O3 were investigated by incubation with mouse macrophage cells (J774). Microscopic and macroscopic FBI were demonstrated in vivo by injection of bare or PEG‐b‐PAAc‐modified Er3+:Y2O3 into C57BL/6 mice. The NIR fluorescence images showed that PEG‐b‐PAAc modification significantly reduced the agglomeration of Er3+:Y2O3 in mice and enhanced the distribution of Er3+:Y2O3.  相似文献   

16.
Fluorescence‐extended X‐ray absorption fine structure (EXAFS), and emission spectrum and excitation spectrum (ESES) were used to characterize the local structure of rare earth‐doped poly(methyl methacrylate)s (Re‐PMMAs) with ion concentration of 600–1000 ppm. Fluorescence EXAFS shows that the chemical state of Sm in Sm‐PMMA is the same as that in Sm2O3 and samarium octanoate (SOA), while that of Eu in Eu‐PMMA is different from that in Eu2O3 and europium octanoate. ESES also proves the concomitance of Eu2+ with Eu3+ ions in Eu‐PMMA. And, the almost identical peak positions of Eu L3 edge at ~6976.7 eV in fluorescence EXAFS of Eu‐PMMA with various Eu content suggests the proportions of Eu2+ to Eu3+ are the same in these samples. The simulation of fluorescence EXAFS shows that the first‐shell coordination number of Sm3+ in Sm‐PMMA is 9.12, and the average first‐shell distance around Sm3+ in Sm‐PMMA is 2.43 Å. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1294–1298, 2006  相似文献   

17.
Chelating resins have been considered to be suitable materials for the recovery of heavy metals in water treatments. A chelating resin based on modified poly(styrene‐alt‐maleic anhydride) with 2‐aminopyridine was synthesized. This modified resin was further reacted with 1,2‐diaminoethan or 1,3‐diaminopropane in the presence of ultrasonic irradiation for the preparation of a tridimensional chelating resin on the nanoscale for the recovery of heavy metals from aqueous solutions. The adsorption behavior of Fe2+, Cu2+, Zn2+, and Pb2+ ions were investigated by the synthesis of chelating resins at various pH's. The prepared resins showed a good tendency for removing the selected metal ions from aqueous solution, even at acidic pH. Also, the prepared resins were examined for the removal of metal ions from industrial wastewater and were shown to be very efficient at adsorption in the cases of Cu2+, Fe2+, and Pb2+. However; the adsorption of Zn2+ was lower than those of the others. The resin was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction analysis, and differential scanning calorimetry analysis. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
Hydrolyzed poly(styrene‐co‐maleic anhydride) (PSMA) as a high‐efficiency adsorbent is used for recovering La3+, Eu3+, Tb3+, and Yb3+ from the simulate wastewater of bastnaesite leach liquor. The pseudo‐first‐order and pseudo‐second‐order models are used to fit adsorption data in the kinetic studies and the results show good correlation with the pseudo‐second‐order model. The Langmuir model is found to fit for the isotherm data of all the rare earth ions (RE3+) and the maximum adsorption capacity of hydrolyzed PSMA is 285.79, 301.92, 305.46, and 336.65 mg g?1 at 298 K for La3+, Eu3+, Tb3+, and Yb3+, respectively. The adsorption could be conducted in at pH 6.0 and the equilibrium is fast established in 30 min. Competition from coexisting ions (Ca2+, Mg2+) was proved to be insignificant. Moreover, the spent adsorbent could be well regenerated and kept above 80% of adsorption efficiency at the end of the fifth cycle. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43676.  相似文献   

19.
A simple benzothiazole‐based fluorescent probe (TDA) for the determination of Hg2+ ion in aqueous solutions was synthesised in one step and characterised by 1H NMR, 13C NMR, APT, COSY, FTIR, and elemental analysis. TDA shows a significant fluorescence change upon the interaction of Hg2+ ion in DMF–water (v/v = 1/1), while only minor changes in fluorescence intensity are observed with 18 other metal ions. Fluorescence enhancement by a factor of 15 is achieved upon selective interaction with Hg2+ ion. The Hg2+ ion detection process is found to be pH dependent; therefore, TDA could be feasible within a pH range of 4.0–7.0.  相似文献   

20.
1,4‐Dimethyl‐5‐aminotetrazolium 5‐nitrotetrazolate ( 2 ) was synthesized in high yield from 1,4‐dimethyl‐5‐aminotetrazolium iodide ( 1 ) and silver 5‐nitrotetrazolate. Both new compounds ( 1, 2 ) were characterized using vibrational (IR and Raman) and multinuclear NMR spectroscopy (1H, 13C, 14N, 15N), elemental analysis and single crystal X‐ray diffraction. 1,4‐Dimethyl‐5‐aminotetrazolium 5‐nitrotetrazolate ( 2 ) represents the first example of an energetic material which contains both a tetrazole based cation and anion. Compound 2 is hydrolytically stable with a high melting point of 190 °C (decomposition). The impact sensitivity of compound 2 is very low (30 J), it is not sensitive towards friction (>360 N). The molecular structure of 1,4‐dimethyl‐5‐aminotetrazolium iodide ( 1 ) in the crystalline state was determined by X‐ray crystallography: orthorhombic, Fddd, a=1.3718(1) nm, b=1.4486(1) nm, c=1.6281(1) nm, V=3.2354(5) nm3, Z=16, ρ=1.979 g cm−1, R1=0.0169 (F>4σ(F)), wR2 (all data)=0.0352.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号