首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Nylon 66 nanofibers were prepared by irradiating as‐spun nylon 66 fibers with radiation from a carbon dioxide (CO2) laser while drawing them at supersonic velocities. A supersonic jet was generated by blowing air into a vacuum chamber through the fiber injection orifice. The fiber diameter depended on the drawing conditions used, such as laser power, chamber pressure, laser irradiation point, and fiber supply speed. A nanofiber obtained at a laser power of 20 W and a chamber pressure of 20 kPa had an average diameter of 0.337 μm and a draw ratio of 291,664, and the drawing speed in the CO2 laser supersonic drawing was 486 m s?1. The nanofibers showed two melting peaks at about 257 and 272°C. The lower melting peak is observed at the same temperature as that of the as‐spun fiber, whereas the higher melting peak is about 15°C higher than the lower one. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40015.  相似文献   

2.
Poly(ethylene terephthalate) (PET) nanofibers were prepared by irradiating a PET fiber with radiation from a carbon dioxide (CO2) laser while drawing it at supersonic velocities. A supersonic jet was generated by blowing air into a vacuum chamber through the fiber injection orifice. The flow velocity from the orifice was estimated by computer simulation; the fastest flow velocity was calculated to be 401 m s−1 at a chamber pressure of 6 kPa. A nanofiber obtained using a laser power of 8 W and a chamber pressure of 6 kPa had an average diameter of 193 nm and a draw ratio of about 900,000. This technique is a novel method for producing nanofibers.  相似文献   

3.
Poly(p‐phenylene sulfide) (PPS) nanofibers are prepared by irradiating a PPS fiber with a carbon dioxide (CO2) laser while drawing it at supersonic speeds. A supersonic jet is generated by blowing air into a vacuum chamber through the fiber injection orifice. Nanofibers obtained at a laser power of 30 W and chamber pressure of 10 kPa exhibit an average diameter of 600 nm and a draw ratio of 110,000. Scanning electron microscopy, differential scanning calorimetry, and wide‐angle X‐ray diffraction analyses are employed to investigate the relationships among the chamber pressure, fiber morphology, and crystallization behavior. The nanofibers exhibit two melting temperatures (Tm): approximately 280°C and 320°C. The endothermic peak at Tm = 280°C is ascribable to lamellar crystals and that at Tm = 320°C to the highly complete crystals, since the polymer molecular chain is highly oriented. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40922.  相似文献   

4.
Poly(ethylene terephthalate) (PET) particles were prepared by the irradiation of PET fibers with a carbon dioxide (CO2) laser while atomizing them at supersonic velocities. A supersonic jet was generated by blowing air into a vacuum chamber through a fiber injection orifice. The fibers are melted by laser heating and atomized by the supersonic jet at the outlet of the orifice. The PET particles produced by CO2 laser supersonic atomization conducted at a laser power of 34 W and at a chamber pressure of 10 kPa have an average particle size of 0.619 μm, high circularity, and a smooth surface that is not roughened by laser ablation. The novel CO2 laser supersonic atomization technique can be used to easily prepare polymeric nanoparticles of various thermoplastic polymers using only CO2 laser irradiation without the need for solvents and additives. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40909.  相似文献   

5.
Thermotropic liquid crystal polymer (TLCP)/poly(ethylene 2,6‐naphthalate) (PEN) were prepared by a melt blending, and were melt spun by a spin‐draw process. In this study, we suggest novel drawing technology using the CO2 laser that can directly and uniformly heat up fiber inside to prevent the formation of ununiform structures in conventional heat drawing process. The properties of the heat/laser drawn TLCP/PEN blend fibers were superior to those of any other handled fibers, and were rather more excellent than those of TLCP/PEN blend fibers annealed at 135°C for 10 min. It was confirmed that the CO2 laser drawing made it possible to achieve the optimal drawing effect by draw ratio. The combined heating and CO2 laser‐drawing method has a great potential for industrial applications as a novel fiber‐drawing process, and it can also be applied continuously to conventional spin‐draw system. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 205–211, 2007  相似文献   

6.
Akihiro Suzuki  Kyohei Arino 《Polymer》2010,51(8):1830-1836
Poly(ethylene terephthalate) (PET) nanosheets were fabricated by winding nanofibers onto a spool. The nanofibers were prepared by irradiating PET fibers with radiation from a carbon dioxide laser while drawing them at supersonic velocities. A supersonic jet was generated by blowing air into a vacuum chamber through the fiber injection orifice. A new vacuum chamber was developed to produce nanosheets; it has seven fiber injection orifices and a spool to collect the nanofibers. A rectangular nanosheet that was 17 cm wide, 18 cm long, and 30 μm thick was obtained by collecting nanofibers for 10 min. The nanosheet is composed of nanofibers with an average fiber diameter of 350 nm. This technique is a novel method for producing nanosheets.  相似文献   

7.
Extended chains and/or extended chain crystals (ECC) are important structures for improving the mechanical properties of polymer fibers. ECC have so far been produced using specially prepared materials or manufacturing methods. In our study on the production of nanofibers by carbon dioxide (CO2) laser supersonic drawing, we succeeded in producing nylon‐66 nanofibers having a high melting point near the equilibrium melting point (Tm0). Two melting points (Tm) of 260 and 276°C were observed for the nanofibers, with the latter temperature being close to the Tm0 (280°C) of nylon‐66. A nanofiber that was heat treated at 279°C for 10 min displayed a large stacked lamellar structure with an average crystal thickness of 140 nm. That value was close to the average molecular chain length of 212 nm, which was calculated from the average molecular weight of the nanofibers. It was inferred from these results that ECC corresponding to the average molecular chain length were present in the nanofibers. The CO2 laser supersonic drawing process is applicable to general purpose thermoplastic polymers and uses a simple drawing system. It is expected that this drawing method will help to improve the fundamental performance of general purpose polymers. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40361.  相似文献   

8.
CO2‐laser supersonic drawing method can produce bulky fluffy poly(ethylene terephthalate) (PET) nanofibers (NFs) by only irradiating CO2‐laser to as‐spun PET fibers in the supersonic air jet. Cylindrical PET NF three‐dimensional structure (NF‐3DS) was fabricated by compression‐molding the obtained fluffy PET NFs using the cylindrical metal mold. NF‐3DS mold was completely disordered 3DS without a laminated structure because NFs were disorderly packed in the metal mold. The porosity of NF‐3DS can be changed by varying the filling weight of NF into the metal mold, and the highest porosity was 95.4%. The shape recovery ratio after 50% uniaxial compression in the height of NF‐3DS increases as the porosity increases, and NF‐3DS with a porosity of 95.4% had a shape recovery ratio of 98.1%. NF‐3DS with a desired shape will be produced if the metal mold can be prepared. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45763.  相似文献   

9.
An isotactic polypropylene hollow microfiber was continuously produced by using a carbon dioxide (CO2) laser‐thinning method. To prepare the hollow microfiber continuously, the apparatus used for the thinning of the solid fiber was improved so that the laser can circularly irradiate to the hollow fiber. Original hollow fiber with an outside diameter (OD) of 450 μm and an internal diameter (ID) of 250 μm was spun by using a melt spinning machine with a specially designed spinneret to produce the hollow fiber. An as‐spun hollow fiber was laser‐heated under various conditions, and the OD and the ID decreased with increasing the winding speed. For example, when the hollow microfiber obtained by irradiating the CO2 laser to the original hollow fiber supplied at 0.30 m min?1 was wound up at 800 m min?1, the obtained hollow microfiber had an OD of 6.3 μm and an ID of 2.2 μm. The draw ratio calculated from the supplying and the winding speeds was 2667‐fold. The hollow microfibers obtained under various conditions had the hollowness in the range of 20–30%. The wide‐angle X‐ray diffraction patterns of the hollow microfibers showed the existence of the highly oriented crystallites. Further, the OD and ID decreased, and the hollowness increased by drawing hollow microfiber obtained with the laser‐thinning. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2600–2607, 2006  相似文献   

10.
In preliminary experiments to optimize the condition of a laser heating, zone drawing for poly(ethylene terephthalate) (PET) fiber, a microfiber was prepared by a continuous‐wave carbon dioxide (CW CO2) laser heating. CW CO2 laser heating was carried out at an extremely low applied tension (σa) at a higher laser power density (PD) as compared to the optimum condition for the laser heating, zone drawing of PET fiber reported previously. The microfibers were obtained by CO2 laser heating carried out at a PD of 15.8 W cm?2 and under a σa of 0.66 MPa or lower. The diameter of the fiber decreased with a decreasing σa and increasing PD. The smaller the diameter, the higher was its birefringence. The smallest diameter fiber obtained at σa = 0.17 MPa at PD = 21 W cm?2 had a diameter of 4.5 μm and a birefringence of 0.112, and its draw ratio estimated from the diameter reached 3086 fold. Such a high draw ratio was not previously attained by any drawing method. In a wide‐angle X‐ray diffraction photograph of the smallest diameter fiber, indistinct reflections due to oriented crystallites were observed. An SEM micrograph of the smallest diameter fiber showed a smooth surface without any crack and was uniform in diameter. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3297–3283, 2003  相似文献   

11.
Supercritical fluids having different solubility parameters were obtained by changing the parameters of supercritical CO2 and adding a cosolvent (methanol). The crystallization behavior of amorphous poly(ethylene 2,6‐naphthalate) (PEN) in these supercritical fluids covering a wide range of solubility parameter was investigated using wide‐angle X‐ray diffraction and differential scanning calorimetry. A three‐dimensional diagram of crystallization versus temperature, pressure and solubility parameter (i.e. solvent concentration) was established to represent the general behavior of crystallization for amorphous PEN. Supercritical fluids with a higher overall solubility parameter plasticized the PEN chains more effectively and thus provided moderate conditions to induce the crystallization of amorphous PEN. Copyright © 2007 Society of Chemical Industry  相似文献   

12.
A high temperature zone‐drawing method was applied to a nylon 66 microfiber, obtained by using CO2 laser‐thinning, to develop its mechanical properties. The microfiber used for the high temperature zone‐drawing was prepared by winding at 150 m min?1 the microfiber obtained by irradiating the laser at 4.0 W cm?2 to an original fiber with a diameter of 50 μm, and had a diameter of 9.6 μm and a birefringence of 0.019. The high temperature zone‐drawing was carried out in two steps; the first drawing was carried out at a temperature of 230°C at supplying and winding speeds of 0.266 and 0.797 m min?1, the second at 250°C at supplying and winding speeds of 0.266 and 0.425 m min?1, respectively. The diameter of the microfiber decreased, and its birefringence increased stepwise with the processing. The high temperature zone‐drawn microfiber finally obtained had a diameter of 4.2 μm, a birefringence of 0.079, total draw ratio of 4.8, tensile modulus of 12 GPa, and tensile strength of 1.0 GPa. The wide‐angle X‐ray diffraction photograph of the drawn microfiber showed the existence of highly oriented crystallites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 42–47, 2006  相似文献   

13.
An air‐drawing model of polypropylene (PP) polymer and an air jet flow field model in wide‐slot positive‐pressure spunbonding process are established. The influences of the density and the specific heat capacity of polymer melt at constant pressure changing with polymer temperature on the fiber diameter have been studied. The predicted fiber diameter agrees with the experimental data as well. The effects of the processing parameters on the fiber diameter have been investigated. The air jet flow field model is solved by means of the finite difference method. The numerical simulation computation results of distribution of the fiber diameter match quite well with the experimental data. The air‐drawing model of polymers is solved with the help of the distributions of the air velocity. It can be concluded that the higher air velocity and air temperature can yield the finer fibers diameter. The higher inlet pressure, longer drawing segment length, smaller air knife edge, longer exit length, smaller slot width, and smaller jet angle can all cause higher air velocity and air pressure along z‐axis position, which are beneficial to the air drawing of the polymer melt and thus to reduce the fiber diameter. The experimental results show that the agreement between the predicted results and the experimental measured data is very better, which verifies the reliability of these models. Also, they reveal great prospects for this work in the field of computer‐assisted design (CAD) of spunbonding process. POLYM. ENG. SCI., 58:1371–1380, 2018. © 2017 Society of Plastics Engineers  相似文献   

14.
Glass‐ceramic fibers containing Cr3+‐doped ZnAl2O4 nanocrystals were fabricated by the melt‐in‐tube method and successive heat treatment. The obtained fibers were characterized by electro‐probe micro‐analyzer, X‐ray diffraction, Raman spectrum and high‐resolution transmission electron microscopy. In our process, fibers were precursor at the drawing temperature where the fiber core glass was melted while the clad was softened. No obvious element interdiffusion between the core and the clad section or crystallization was observed in precursor fiber. After heat treatment, ZnAl2O4 nanocrystals with diameters ranging from 1.0 to 6.3 nm were precipitated in the fiber core. In comparison to precursor fiber, the glass‐ceramic fiber exhibits broadband emission from Cr3+ when excited at 532 nm, making Cr3+‐doped glass‐ceramic fiber a promising material for broadband tunable fiber laser. Furthermore, the melt‐in‐tube method demonstrated here may open a new gate toward the fabrication of novel glass‐ceramic fibers.  相似文献   

15.
A series of copolymers and glass fiber composites were successfully prepared from 2,2‐bis [4‐(3,4‐dicyanophenoxy) phenyl] propane (BAPh), epoxy resins E‐44 (EP), and polyarylene ether nitriles (PEN) with 4,4′‐diaminodiphenyl sulfone as curing additive. The gelation time was shortened from 25 min to 4 min when PEN content was 0 wt % and 15 wt %, respectively. PEN could accelerate the crosslinking reaction between the phthalonitrile and epoxy. The initial decomposition temperatures (Ti) of BAPh/EP copolymers and glass fiber composites were all more than 350°C in nitrogen. The Tg of 15 wt % PEN glass fiber composites increased by 21.2°C compared with that of in comparison with BAPh/EP glass fiber composite. The flexural strength of the copolymers and glass fiber composites reached 119.8 MPa and 698.5 MPa which increased by 16.6 MPa and 127.3 MPa in comparison with BAPh/EP composite, respectively. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
A glassy material similar to fulgurites (fusion of the soil which has been struck by lightning) was prepared by continuous wave (CW) CO2 laser (λ = 10.6 μm) ablation of lime–pozzolan mortar at medium‐vacuum conditions and atmospheric pressure. In all the irradiated samples, the determined surface temperature is higher than the melting temperature of mortar (1556 K), so the surface is melted and converted into an amorphous glassy when cooled. The samples were studied combining laser‐induced breakdown spectroscopy (LIBS) and Raman spectroscopy. The emission induced by the CW CO2 laser is mainly due to electronic relaxation of Na, K, Si, Si+, Ca, O, N, and CaOH species along with an intense continuum due to blackbody emission. The emission induced on both natural and produced fulgurite is mostly due to electronic relaxation of Ca, Ca+, Si, Si+, Si2+, Si3+, H, Na, K, Mg, N, O, CaOH, and OH species with different relative intensities in some of them. Raman spectra show that the glassy formed material is similar to natural fulgurites, with the main difference arising from portlandite formed over the surface of the lime–pozzolan mortar. As the laser power increases, less density SiO2 glass is formed with more Q4 and Q1 units present.  相似文献   

17.
This work investigates CO2 removal by single and blended amines in a hollow‐fiber membrane contactor (HFMC) under gas‐filled and partially liquid‐filled membrane pores conditions via a two‐scale, nonisothermal, steady‐state model accounting for CO2 diffusion in gas‐filled pores, CO2 and amines diffusion/reaction within liquid‐filled pores and CO2 and amines diffusion/reaction in liquid boundary layer. Model predictions were compared with CO2 absorption data under various experimental conditions. The model was used to analyze the effects of liquid and gas velocity, CO2 partial pressure, single (primary, secondary, tertiary, and sterically hindered alkanolamines) and mixed amines solution type, membrane wetting, and cocurrent/countercurrent flow orientation on the HFMC performance. An insignificant difference between the absorption in cocurrent and countercurrent flow was observed in this study. The membrane wetting decreases significantly the performance of hollow‐fiber membrane module. The nonisothermal simulations reveal that the hollow‐fiber membrane module operation can be considered as nearly isothermal. © 2014 American Institute of Chemical Engineers AIChE J, 61: 955–971, 2015  相似文献   

18.
An isotactic polypropylene (i‐PP) microfiber was continuously produced by using a carbon dioxide (CO2) laser‐thinning apparatus developed in our laboratory. The CO2 laser‐thinning apparatus could wind up the obtained microfiber in the range of 100 m min?1 to 2500 m min?1. The diameter of the microfiber decreased and its birefringence increased with increasing winding speed. When the microfiber obtained by irradiating the CO2 laser operated at a power density of 31.8 W cm?2 to the original fiber supplied at 0.30 m min?1 was wound at 1,387 m min?1, the obtained microfiber had a diameter of 3.5 μm and a birefringence of 25 × 10?3. The draw ratio calculated from the supplying and the winding speeds was 4,623‐fold. The SEM photographs showed that the obtained microfibers had a smooth surface without a surface roughened by a laser‐ablation and were uniform in diameter. The wide‐angle X‐ray diffraction photographs of the microfibers wound at 848 and 1,387 m min?1 showed the existence of the oriented crystallites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 27–31, 2006  相似文献   

19.
A Mo‐substituted lanthanum tungstate mixed proton‐electron conductor, La5.5W0.6Mo0.4O11.25?δ (LWM04), was synthesized using solid state reactions. Dense U‐shaped LWM04 hollow‐fiber membranes were successfully prepared using wet‐spinning phase‐inversion and sintering. The stability of LWM04 in a CO2‐containing atmosphere and the permeation of hydrogen through the LWM04 hollow‐fiber membrane were investigated in detail. A high hydrogen permeation flux of 1.36 mL/min cm2 was obtained for the U‐shaped LWM04 hollow‐fiber membranes at 975°C when a mixture of 80% H2?20% He was used as the feed gas and the sweep side was humidified. Moreover, the hydrogen permeation flux did not significantly decrease over 70 h of operation when fed with a mixture containing 25% CO2, 50% H2, and 25% He, indicating that the LWM04 hollow‐fiber membrane has good stability under a CO2‐containing atmosphere. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1997–2007, 2015  相似文献   

20.
Dual components of a self‐healing epoxy system comprising a low viscosity epoxy resin, along with its amine based curing agent, were separately encapsulated in a polyacrylonitrile shell via coaxial electrospinning. These nanofiber layers were then incorporated between sheets of carbon fiber fabric during the wet layup process followed by vacuum‐assisted resin transfer molding to fabricate self‐healing carbon fiber composites. Mechanical analysis of the nanofiber toughened composites demonstrated an 11% improvement in tensile strength, 19% increase in short beam shear strength, 14% greater flexural strength, and a 4% gain in impact energy absorption compared to the control composite without nanofibers. Three point bending tests affirmed the spontaneous, room temperature healing characteristics of the nanofiber containing composites, with a 96% recovery in flexural strength observed 24 h after the initial bending fracture, and a 102% recovery recorded 24 h after the successive bending fracture. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44956.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号