首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The synthesis, self‐assembly, and spectroscopic investigations of spiropyran (SP)‐functionalized dendron 1 are reported. Under UV light irradiation, assembly of 1 into nano‐/microparticles occurs due to the transformation of the closed form of SP into the open merocyanine (MC) form. The formation of these nano‐/microparticles is confirmed by transmission electron microscopy (TEM) and dynamic light scattering (DLS) experiments in addition to the confocal laser scanning microscopy (CLSM) measurements. These nano‐/microparticles exhibit relatively strong red emission. It is interesting to note that the direct cooling of the toluene/benzene solution of 1 to 0 °C leads to gel formation. Multivalent π–π interactions due to the dendron in 1 may be the driving‐force for the gelation. The UV light irradiation cannot destroy the gel phase, and in fact, the gel–gel transition is successfully realized. The purple‐blue gel exhibits relatively strong red fluorescence; moreover, the fluorescence can be reversibly switched by alternating UV and visible light irradiation. The results clearly indicate that the MC form after aggregation becomes more stable and fluorescent.  相似文献   

2.
The unique and unprecedented electroluminescence behavior of the white‐emitting molecule 3‐(1‐(4‐(4‐(2‐(2‐hydroxyphenyl)‐4,5‐diphenyl‐1H‐imidazol‐1‐yl)phenoxy)phenyl)‐4,5‐diphenyl‐1H‐imidazol‐2‐yl)naphthalen‐2‐ol (W1), fluorescence emission from which is controlled by the excited‐state intramolecular proton transfer (ESIPT) is investigated. W1 is composed of covalently linked blue‐ and yellow‐color emitting ESIPT moieties between which energy transfer is entirely frustrated. It is demonstrated that different emission colors (blue, yellow, and white) can be generated from the identical emitter W1 in organic light‐emitting diode (OLED) devices. Charge trapping mechanism is proposed to explain such a unique color‐tuned emission from W1. Finally, the device structure to create a color‐stable, color reproducible, and simple‐structured white organic light‐emitting diode (WOLED) using W1 is investigated. The maximum luminance efficiency, power efficiency, and luminance of the WOLED were 3.10 cd A?1, 2.20 lm W?1, 1 092 cd m?2, respectively. The WOLED shows white‐light emission with the Commission Internationale de l′Eclairage (CIE) chromaticity coordinates (0.343, 0.291) at a current level of 10 mA cm?2. The emission color is high stability, with a change of the CIE chromaticity coordinates as small as (0.028, 0.028) when the current level is varied from 10 to 100 mA cm?2.  相似文献   

3.
The unique and unprecedented electroluminescence behavior of the white‐emitting molecule 3‐(1‐(4‐(4‐(2‐(2‐hydroxyphenyl)‐4,5‐diphenyl‐1H‐imidazol‐1‐yl)phenoxy)phenyl)‐4,5‐diphenyl‐1H‐imidazol‐2‐yl)naphthalen‐2‐ol (W1), fluorescence emission from which is controlled by the excited‐state intramolecular proton transfer (ESIPT) is investigated. W1 is composed of covalently linked blue‐ and yellow‐color emitting ESIPT moieties between which energy transfer is entirely frustrated. It is demonstrated that different emission colors (blue, yellow, and white) can be generated from the identical emitter W1 in organic light‐emitting diode (OLED) devices. Charge trapping mechanism is proposed to explain such a unique color‐tuned emission from W1. Finally, the device structure to create a color‐stable, color reproducible, and simple‐structured white organic light‐emitting diode (WOLED) using W1 is investigated. The maximum luminance efficiency, power efficiency, and luminance of the WOLED were 3.10 cd A?1, 2.20 lm W?1, 1 092 cd m?2, respectively. The WOLED shows white‐light emission with the Commission Internationale de l′Eclairage (CIE) chromaticity coordinates (0.343, 0.291) at a current level of 10 mA cm?2. The emission color is high stability, with a change of the CIE chromaticity coordinates as small as (0.028, 0.028) when the current level is varied from 10 to 100 mA cm?2.  相似文献   

4.
The synthesis and optical investigations of di(p‐methoxylphenyl)dibenzofulvene ( 1 ) and its analogues 2 , 3 , 4 , 5 , 6, and 7 with different lengths of alkoxyl chains are presented. All of these molecules exhibit emission in the solid state. The following interesting properties are reported for compound 1 : 1) the solid‐state fluorescence of 1 is dependent on the polymorphism forms; the two crystalline forms 1a and 1b are strongly blue‐ and yellow‐green‐emissive, whereas the amorphous solid is weakly fluorescent with orange emission; 2) on the basis of crystal‐structural analysis, the intermolecular interactions will restrict the internal rotations, leading to fluorescence enhancement for the two crystalline forms 1a and 1b ; however, the difference in emission color between 1a and 1b is ascribed to the molecular conformational alteration; 3) the solid‐state fluorescence of 1 can be tuned by heating and cooling as well as grinding. Importantly, microrods of 1a and 1b exhibit outstanding optical waveguide behaviors. Moreover, amplified spontaneous emission for 1b and multimode‐lasing behavior for 1a are presented. Besides the studies of compound 1 , the crystal structures and solid‐state fluorescence behaviors of 2 , 3 , 4 , 5 , 6, and 7 are also described.  相似文献   

5.
Currently, the development of aggregation‐induced emission (AIE) luminogens (AIEgens) has enabled us to “see” never before seen scenery. However, not all AIEgens exhibit the impressive emission efficiency in aggregated states. Moreover, the emission color of AIEgens can be seriously affected when their performance is improved. Therefore, to overcome this limitation, an efficient method is proposed here through the tailored alkyl linkages to greatly improve the emission efficiency of tetraphenylethene (TPE)‐based AIEgens but retain their emission color. Encouragingly, significantly enhanced emission efficiency is achieved with the quantum yield up to 68.19% and 65.20% for BTPE‐C4 and BTPE‐C8, respectively, in contrast to that of TPE (25.32%), demonstrating the proverb that one plus one is much larger than two (1 + 1 >> 2). Interestingly, when alkyl linkages in skeletons are fine‐tuned, self‐assembled nanorods, nanosheets, and nanofibers are successfully achieved for BTPE‐C1, BTPE‐C4, and BTPE‐C8 in tetrahydrofuran and water system. Also, these developed emissive AIEgens not only exhibit impressive response to the environmental stimuli of mechanical force, viscosity, temperature, and light, but can also be used to dynamically monitor and control the phase‐separated morphology in polymeric blends.  相似文献   

6.
This study reveals the mechanism of the dual‐emission properties for asymmetrical diphenylsulfone and diphenylketone derivatives. A series of asymmetrical diphenylketone and diphenylsulfone derivatives with dual‐emission properties are designed and synthesized. By single crystal structure analyses, various photophysical studies, and 2D 1H–1H NOSEY NMR studies, the lower energy emission bands in the dual‐emission spectra are successfully assigned to hydrogen‐bonding‐assisted intermolecular charge transfer emission. The emission properties of these compounds can easily be tuned in both solid state and solution state by destroying or strengthening the intermolecular hydrogen bonding. In addition, thermally activated delayed fluorescence characteristics for the intermolecular charge transfer emissions are also observed. The control of the intermolecular and intramolecular charge transfers serves as the basis for the generation of the white‐light emission. For compound CPzPO, nearly pure white‐light emission with CIE coordinates of (0.31, 0.32) is easily achieved by precipitation from dichloromethane and hexane mixed solvent system. These results clearly give an insight into the dual‐emission properties and provide a rational strategy for the design and synthesis of single‐component white‐light‐emitting materials and mechanoresponsive light‐emitting materials.  相似文献   

7.
A fluorescent naphthalimide‐tetrazine dyad (NITZ) was examined for electrofluorochromism. The reversible electrochemistry of the tetrazine was accompanied by the fluorescence change through a quasi‐complete energy transfer in an electrochemical cell prepared by the mixture of polymer electrolyte and naphthalimide‐tetrazine dyad. Owing to the energy transfer within the dyad (naphthalimide and tetrazine), the fluorescence efficiency of NITZ was much enhanced and the effective fluorophore concentration in this system was much less than other tetrazine based electrofluorochromic device (EFD). Thus the yellow fluorescence of NITZ was switched on and off remarkably even with small quantity of NITZ (1 wt.%) in an EFD upon application of step potentials for different redox state. Furthermore, multi‐color fluorescence switching was achieved by blending a naphthalimide to the electrofluorochromic layer, to show white‐blue‐dark state of fluorescence. Since the tetrazine and naphthalimide units have their emission quenched at different potentials, the emission color could be tuned by quenching emission at selected wavelengths, reversibly, under low working potentials.  相似文献   

8.
Laterally patterning the emission color of polymer light‐emitting devices is one of the current technological challenges for their commercialization. Photopatterning is one of the most convenient approaches for the production of closely spaced, differently colored pixels, other than direct‐writing approaches such as ink‐jet printing. The photo‐induced addition of thiols to C?C bonds (the thiol‐ene) reaction is here utilized to achieve photobleaching of poly(phenylenevinylene)‐type polymers. By exploiting the chemical selectivity of the UV‐induced thiol‐ene reaction, the emission color in a guest–host system is tuned from that of the guest to that of the host. It is demonstrated that the presented method can be applied for numerous energy‐transfer systems.  相似文献   

9.
A series of blue (B), green (G) and red (R) light‐emitting, 9,9‐bis(4‐(2‐ethyl‐hexyloxy)phenyl)fluorene (PPF) based polymers containing a dibenzothiophene‐S,S‐dioxide (SO) unit (PPF‐SO polymer), with an additional benzothiadiazole (BT) unit (PPF‐SO‐BT polymer) or a 4,7‐di(4‐hexylthien‐2‐yl)‐benzothiadiazole (DHTBT) unit (PPF‐SO‐DHTBT polymer) are synthesized. These polymers exhibit high fluorescence yields and good thermal stability. Light‐emitting diodes (LEDs) using PPF‐SO25, PPF‐SO15‐BT1, and PPF‐SO15‐DHTBT1 as emission polymers have maximum efficiencies LEmax = 7.0, 17.6 and 6.1 cd A?1 with CIE coordinates (0.15, 0.17), (0.37, 0.56) and (0.62, 0.36), respectively. 1D distributed feedback lasers using PPF‐SO30 as the gain medium are demonstrated, with a wavelength tuning range 467 to 487 nm and low pump energy thresholds (≥18 nJ). Blending different ratios of B (PPF‐SO), G (PPF‐SO‐BT) and R (PPF‐SO‐DHTBT) polymers allows highly efficient white polymer light‐emitting diodes (WPLEDs) to be realized. The optimized devices have an attractive color temperature close to 4700 K and an excellent color rendering index (CRI) ≥90. They are relatively stable, with the emission color remaining almost unchanged when the current densities increase from 20 to 260 mA cm?2. The use of these polymers enables WPLEDs with a superior trade‐off between device efficiency, CRI, and color stability.  相似文献   

10.
The synthesis and unique tunable optical properties of core/crown nanoplatelets having an inverted Type‐I heterostructure are presented. Here, colloidal 2D CdS/CdSe heteronanoplatelets are grown with thickness of four monolayers using seed‐mediated method. In this work, it is shown that the emission peak of the resulting CdS/CdSe heteronanoplatelets can be continuously spectrally tuned between the peak emission wavelengths of the core only CdS nanoplatelets (421 nm) and CdSe nanoplatelets (515 nm) having the same vertical thickness. In these inverted Type‐I nanoplatelets, the unique continuous tunable emission is enabled by adjusting the lateral width of the CdSe crown, having a narrower bandgap, around the core CdS nanoplatelet, having a wider bandgap, as a result of the controlled lateral quantum confinement in the crown region additional to the pure vertical confinement. As a proof‐of‐concept demonstration, a white light generation is shown by using color conversion with these CdS/CdSe heteronanoplatelets having finely tuned thin crowns, resulting in a color rendering index of 80. The robust control of the electronic structure in such inverted Type‐I heteronanoplatelets achieved by tailoring the lateral extent of the crown coating around the core template presents a new enabling pathway for bandgap engineering in solution‐processed quantum wells.  相似文献   

11.
By using Ni0‐mediated polymerization, we have systematically synthesized a series of fluorene‐based copolymers composed of blue‐, green‐, and red‐light‐emitting comonomers with a view to producing polymers with white‐light emission. 2,7‐Dibromo‐9,9‐dihexylfluorene, {4‐(2‐[2,5‐dibromo‐4‐{2‐(4‐diphenylamino‐phenyl)‐vinyl}‐phenyl]‐vinyl)‐phenyl}‐diphenylamine (DTPA), and 2‐{2‐(2‐[4‐{bis(4‐bromo‐phenyl)amino}‐phenyl]‐vinyl)‐6‐tert‐butyl‐pyran‐4‐ylidene}‐malononitrile (TPDCM) were used as the blue‐, green‐, and red‐light‐emitting comonomers, respectively. It was found that the emission spectra of the resulting copolymers could easily be tuned by varying their DTPA and TPDCM content. Thus with the appropriate red/green/blue (RGB) unit ratio, we were able to obtain white‐light emission from these copolymers. A white‐light‐emitting diode using the polyfluorene copolymer containing 3 % green‐emitting DTPA and 2 % red‐emitting TPDCM (PG3R2) with a structure of indium tin oxide/poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonic acid)/PG3R2/Ca/Al was found to exhibit a maximum brightness of 820 cd m–2 at 11 V with Commission Internationale de L'Eclairage (CIE) coordinates of (0.33,0.35), which are close to the standard CIE coordinates for white‐light emission (0.33,0.33).  相似文献   

12.
Much effort has gone into research on light‐emitting electrochemical cells (LECs) in recent years. LECs have a simple structure and can be fabricated using low‐cost methods and materials and are seen as the next big thing in organic devices after organic light‐emitting diodes (OLEDs). In particular, expectations are high, in that LECs could be used to create a new generation of low‐cost lighting systems, making use of their surface‐emitting property. Getting such systems to the market will require the development of highly efficient white light‐emitting LECs. A variety of methods for obtaining white emission based on the light‐mixing principle have been explored. Among these, the use of exciplexes formed between donor‐type and acceptor‐type molecules is one of the more promising. Exciplex emission is broad in spectrum and can be used to produce LECs with a high color rendering index. In this progress report, the recent developments in research into LECs designed to utilize exciplex emission and present technologies used to obtain white emission are discussed. The potential for using thermally activated delayed fluorescence to improve efficiency is described. Finally, the latest developments in optical engineering techniques for LECs are also discussed.  相似文献   

13.
Multicolor luminescent films have great potential for use in optoelectronics, solid‐state light‐emitting materials, and optical devices. This work describes a systematic investigation of the ordered assembly of two‐ (blue/green, blue/orange, red/blue, red/green) and three‐color (blue/red/green) light‐emitting ultrathin films (UTFs) by using different photofunctional anions [bis(N‐methylacridinium)@polyvinylsulfonate ion pairs and anionic derivatives of poly(p‐phenylene), poly(phenylenevinylene), and poly(thiophene)] and Mg‐Al‐layered double hydroxide nanosheets as building blocks. The rational combination of luminescent components affords precise control of the emission wavelengths and intensity, and multicolored luminescent UTFs can be precisely tailored covering most of the visible spectral region. The assembly process of the UTFs and their luminescence properties, as monitored by UV–vis absorption and fluorescence spectroscopy, resulted in a gradual change in luminescence color in the selected light‐emitting spectral region upon increasing the number of deposition cycles. X‐ray diffraction demonstrates that the UTFs are periodic layered structures involving heterogeneous superlattices associated with individual photoactive anion–LDH units. These UTFs also exhibit well‐defined multicolor polarized fluorescence with high polarization anisotropy, and the emissive color changes with polarization direction. Therefore, this work provides a way of fabricating heterogeneous UTFs with tunable‐color luminescence as well as polarized multicolor emission, which have potential applications in the areas of light displays and optoelectronic devices.  相似文献   

14.
Photochemically induced emission tuning for the definition of pixels emitting the three primary colors, red, green, blue (RGB), in a single conducting polymeric layer is investigated. The approach proposed is based on an acid‐induced emission shift of the (1‐[4‐(dimethylamino)phenyl]‐6‐phenylhexatriene) (DMA‐DPH) green emitter and acid‐induced quenching of the red fluorescent emitter (4‐dimethylamino‐4′‐nitrostilbene) (DANS). The two emitters are dispersed in the wide bandgap conducting polymer poly(9‐vinylcarbazole) (PVK), along with a photoacid generator (PAG). In the unexposed film areas, red emission is observed because of efficient energy transfer from PVK and DMA‐DPH to DANS. Exposure of selected areas of the film at different doses results in quenching of the red emitter's fluorescence and the formation of green, blue, or even other color‐emitting pixels, depending on the exposure dose and the relative concentrations of the different compounds in the film. Organic light‐emitting diodes having the PVK polymer containing the appropriate amounts of DMA‐DPH, DANS, and PAG as the emitting layer are fabricated and electroluminescence spectra are recorded. The time stability of induced emission spectrum changes and the color stability during device operation are also examined, and the first encouraging results are obtained.  相似文献   

15.
A facile approach for the preparation of supramolecular polymer‐based fluorescent nanoparticles (FNPs) is reported. FNPs with homogeneous shape and size distribution are fabricated from low‐molecular‐weight molecules, and thus, different compositional constituents can be efficiently incorporated via copolymerization. The emission color of the FNPs covers a wide region from blue to near infrared and can be easily tuned using efficient excitation energy transfer. The photoswitchable fluorescent nanoparticles with high on–off fluorescence contrast are also simply prepared by copolymerization of monomers containing a fluorophore and a photochromic unit. Our FNPs are successfully applied in living cell imaging and as fluorescent inks.  相似文献   

16.
An iridescent chameleon‐like material that can change its colors under different circumstances is always desired in color‐on‐demand applications. Herein, a strategy based on trichromacy and the dynamically tunable fluorescence resonance energy transfer (FRET) process to design and prepare these chameleon‐like fluorescent materials is proposed. A set of trichromic (red, green, and blue), solid fluorescent materials are synthesized by covalently attaching spiropyran, fluorescein, and pyrene onto cellulose chains independently. After simply mixing them together, a full range of color is realized. The chameleon‐like nature of these materials is based on the dynamic tunable FRET process between donors (green and blue) and acceptors (red) in which the energy transfer efficiency can be finely tuned by irradiation. Ultimately, the reversible and nonlinear regulation of fluorescence properties, including color and intensity, is achieved on a timescale recognizable by the naked eye. Benefited by the excellent processability inherited from the cellulose derivatives, the as‐prepared materials are feasibly transformed into different forms. Particularly, a fluorescent ink with the complicated fluorescent input–output dependence suggests more than a proof‐of‐concept; indeed, it suggests a unique method of information encryption, security printing, and dynamic anticounterfeiting.  相似文献   

17.
A series of tetradentate platinum complexes that exhibit both efficient monomer and excimer emission are synthesized. Via small modifications to the cyclometalating ligands, both the monomer and excimer emission energy can be separately tuned. Devices employing all of the developed emitters demonstrate impressively high external quantum efficiencies (EQEs) within the range of 22% to 27% for concentrations between 2% and 16%. The halogen‐free design of the complexes also enables the fabrication of single, doped, white organic light‐emitting diodes (OLEDs) with long operational lifetimes. A balanced white device employing the complex Pt2O2, achieves a device operational lifetime to 80% of the initial luminance estimated at over 200 h at 1000 cd m–2, while also achieving 12.5% peak EQE for a warm white light with a color rendering index of 80. Furthermore, a highly doped device exhibiting nearly exclusive excimer emission showed an impressive operational lifetime, which is estimated at more than 400 h for 1000 cd m‐2.  相似文献   

18.
The development of π‐conjugated molecular systems with high‐efficiency generation of UV and blue light plays an important role in the fields of light‐emitting diodes, fluorescent imaging, and information storage. Herein, supramolecular construction of solid‐state UV/blue luminescent materials are assembled using 2,5‐diphenyloxazole (DPO) with four typical co‐assembled building blocks (1,4‐diiodotetrafluorobenzene, 4‐bromotetrafluorobenzene carboxylic acid, pentafluorophenol, and octafluoronaphthalene). Compared with the pristine DPO sample, the as‐prepared two‐component molecular materials feature ease of crystallization, high crystallinity, enhanced thermal stability and tunable luminescence properties (such as emissive wavelength, color, fluorescence lifetime, and photoluminescence quantum yield) as well as multicolor polarized emission in the UV/blue region. Moreover, pump‐enhanced luminescence and reversible mechanochromic fluorescence (MCF) properties can also be obtained for these molecular solids, which are absent for the pristine DPO sample. Therefore, this work provides a procedure for the facile self‐assembly of ordered two‐component molecular materials with tunable UV/blue luminescence properties, which have potential application in the areas of light‐emitting displays, polarized emission, frequency doubling, and luminescent sensors.  相似文献   

19.
Implementing rigorous standards for high‐quality white organic light‐emitting diodes (WOLEDs) demands further investigation. Herein, a novel and feasible color remedy strategy (CRS) is proposed in WOLEDs composed of binary‐emitters, to arouse the green‐emission, thereby complementing the spectral deficiency in white‐emission. Thus, the color rendering indexes (CRIs) of binary‐emissive WOLEDs can be boosted from 63 to 80 threshold, and the Commission International de I'Eclairage‐(x, y) coordinates are precisely located inside the American National Standard Institute quadrangles, which can rival the WOLEDs integrating ternary or more emitters. Moreover, it is more feasible for CRS‐based binary‐emissive system to tune white‐emission from cool white‐emission (correlated color temperature (CCT) ≈ 5000 K) to eye‐friendly warm white‐emission (CCT ≈ 2000 K). Meanwhile, benefiting from the reduced energy loss and low driving voltage of CRS zone, all of the CRS‐based WOLEDs with diverse CCTs can exceed 20% external quantum efficiency, and the highest approach 25%, as well as the highest power efficiency beyond 60 lm W?1, which is comparable with those reported employing light‐extracting techniques. In addition, it is evident that CRS‐based WOLEDs also exhibit outstanding color stability within the variation of luminance in several orders of magnitude (50–12 000 cd m?2). Thus, this novel CRS provides an innovative pathway to fabricate high‐quality WOLEDs composed of binary emitters.  相似文献   

20.
Solid‐state luminescence is an important strategy for color generation via molecular self‐assembly. Here, a new luminogen (AT3EMIS) containing both a rigid chromophore and a flexible dendron is designed and synthesized for multicolor emission. The emission energy of the target material is precisely controlled by adjusting three different columnar arrays through thermal and mechanical stimulation. With well‐defined supramolecular organizations in different length scales, the luminescent properties of the light switch can be tuned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号