共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents a method for non‐causal exact dynamic inversion for a class of non‐minimum phase nonlinear systems, which seems to be an alternative to those existing in the literature. This method is based on a homotopy procedure that allows to find a ‘small’ periodic solution of a desired equation by a continuous deformation of a known periodic solution of a simpler auxiliary system. This method allows to face the exact output tracking problem for some non‐minimum phase systems that are well known in the literature, such as the inverted pendulum, the motorcycle and the CTOL aircraft. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
2.
The optimal tracking problem for multiple‐input multiple‐output linear‐time‐invariant discrete‐time systems with communication constraints in the feedback path is studied in this paper. The tracking performance is measured by the energy of the error signal between the output of the plant and the reference signal. The objective is to obtain an optimal tracking performance, attainable by all possible stabilizing compensators. It is shown that the optimal tracking performance consists of two parts, one depends on the nonminimum phase zeros and zero direction of the given plant, as well as the reference input signal direction, and the other depends on the nonminimum phase zeros, unstable poles, and pole direction of the given plant, as well as the bandwidth and additive white Gaussian noise of the communication channel. It is also shown that, if the constraint of the communication channel does not exist, the optimal tracking performance reduces to the existing tracking performance of the control system without communication constraints. A typical example is given to illustrate the theoretical results. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
3.
The output tracking (OT) of arbitrary references in discrete‐time (DT) nonlinear systems is addressed by designing an output‐feedback control. A set of difference‐algebraic equations is proposed as an exact solution of the problem. Using a novel technique of approximating DT functions, the system disturbance and steady states, characterized by tracking error identically zero, for both the system state and the control input, are represented as signals generated by a disturbed dynamic system. Using the mentioned dynamics, the control system is extended. Then, a state observer is proposed to estimate the resulting extended system state. Finally, a DT sliding mode controller is designed to achieve the approximate OT. Simulations show the effectiveness of the proposed control scheme. 相似文献
4.
Observer‐based controller for constrained uncertain stochastic nonlinear discrete‐time systems 下载免费PDF全文
Mohamed F. Hassan Muthana T. Alrifai Hisham M. Soliman Mohammed A. Kourah 《国际强度与非线性控制杂志
》2016,26(10):2090-2115
》2016,26(10):2090-2115
In this paper, an observer‐based control approach is proposed for uncertain stochastic nonlinear discrete‐time systems with input constraints. The widely used extended Kalman filter (EKF) is well known to be inadequate for estimating the states of uncertain nonlinear dynamical systems with strong nonlinearities especially if the time horizon of the estimation process is relatively long. Instead, a modified version of the EKF with improved stability and robustness is proposed for estimating the states of such systems. A constrained observer‐based controller is then developed using the state‐dependent Riccati equation approach. Rigorous analysis of the stability of the developed stochastically controlled system is presented. The developed approach is applied to control the performance of a synchronous generator connected to an infinite bus and chaos in permanent magnet synchronous motor. Simulation results of the synchronous generator show that the estimated states resulting from the proposed estimator are stable, whereas those resulting from the EKF diverge. Moreover, satisfactory performance is achieved by applying the developed observer‐based control strategy on the two practical problems. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
5.
A partially delay‐dependent and disordered controller design for discrete‐time delayed systems 下载免费PDF全文
This paper considers the stabilization problem for a class of discrete‐time delayed systems by exploiting a partially delay‐dependent controller whose gains suffer a disordering phenomenon simultaneously. Two stochastic variables are used to describe the partially delay‐dependent and disordering properties, which are not independent, and referred to the original operation modes here. By introducing an augmented Markov chain, the corresponding closed‐loop system is transformed into a Markovian jump system with four new operation modes (NOMs). Based on the proposed model, a kind of controller depending on NOMs is firstly proposed with linear matrix inequalities forms. Moreover, without designing a controller containing NOMs directly, another kind of stabilizing controller referring to one depending on original operation modes is developed, which is composed of a series of NOM‐dependent controllers and satisfies a minimum variance approximation. Finally, two numerical examples are used to demonstrate the utility and superiority of the proposed methods. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
6.
Manh Tuan Do Zhihong Man Jiong Jin Cishen Zhang Jinchuan Zheng Hai Wang 《国际强度与非线性控制杂志
》2016,26(11):2281-2298
》2016,26(11):2281-2298
In this paper, a novel robust sliding mode learning control scheme is developed for a class of non‐minimum phase nonlinear systems with uncertain dynamics. It is shown that the proposed sliding mode learning controller, designed based on the most recent information of the stability status of the closed‐loop system, is capable of adjusting the control signal to drive the sliding variable to reach the sliding surface in finite time and remain on it thereafter. The closed‐loop dynamics including both observable and non‐observable ones are then guaranteed to asymptotically converge to zero in the sliding mode. The developed learning control method possesses many appealing features including chattering‐free characteristic, strong robustness with respect to uncertainties. More importantly, the prior information of the bounds of uncertainties is no longer required in designing the controller. Numerical examples are presented in comparison with the conventional sliding mode control and backstepping control approaches to illustrate the effectiveness of the proposed control methodology. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
7.
Output voltage control of nonlinear DC‐to‐DC power converters is handicapped by the non‐minimum phase character exhibited by these systems. The problem has been usually solved with indirect control strategies that work through the input current. In this article, we report a robust control methodology that uses Galerkin‐based sliding manifolds, which use full state reference profiles and an estimate of the disturbed load parameter. The sliding surface incorporates a first‐order Galerkin approximation of the input current that provides robustness to piecewise constant load perturbations by dynamic compensation: it allows on‐line accommodation to the action of the load estimator. This results in high‐accuracy tracking of periodic references at the output resistance of boost and buck‐boost converters. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
8.
This paper presents a new sporadic control approach to the tracking problem for MIMO closed‐loop systems. An LTI sampled data plant with unmeasurable state affected by external unknown disturbances is considered. The plant is interconnected to an event‐based digital dynamic output‐feedback controller via a network. Both the external reference and the unknown disturbance are assumed to be generated as the free output response of unstable LTI systems. The main feature of the new event‐driven communication logic (CL) is that it works without the strict requirement of a state vector available for measurement. The purpose of the CL is to reduce as much as possible the number of triggered messages along the feedback and feedforward paths with respect to periodic sampling, still preserving internal stability and without appreciably degrading the control system tracking capability. The proposed event‐driven CL is composed of a sensor CL (SCL) and of a controller CL (CCL). The SCL is based on the computation of a quadratic functional of the tracking error and of a corresponding suitably computed time‐varying threshold: a network message from the sensor to the controller is triggered only if the functional equals or exceeds the current value of the threshold. The CCL is directly driven by the SCL: the dynamic output controller sends a feedforward message to the plant only if it has received a message from the sensor at the previous sampled instant. Formulation of the controller in discrete‐time form facilitates its implementation and provides a minimum inter‐event time given by the sampling period. An example taken from the related literature shows the effectiveness of the new approach. The focus of this paper is on the stability and performance loss problems relative to the sporadic nature of the control law. Other topics such as network delay or packets dropout are not considered. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
9.
This paper is concerned with the reachable set estimation problem for discrete‐time linear systems with multiple constant delays and bounded peak inputs. The objective is to check whether there exists a bounded set that contains all the system states under zero initial conditions. First, delay‐dependent conditions for the solvability of the addressed problem are derived by employing a novel Lyapunov–Krasovskii functional. The obtained conditions are expressed in terms of matrix inequalities, which are linear when only one scalar variable is fixed. On the basis of these conditions, an ellipsoid containing the reachable set of the considered system is obtained. An approach for determining the smallest ellipsoid is also provided. Second, the approach and results developed in the first stage are generalized to the case of systems with polytopic parameter uncertainties, and delay‐dependent conditions are given in the form of relaxed matrix inequalities. Finally, two numerical examples are provided to demonstrate the effectiveness of the proposed methods. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
10.
The linear quadratic tracking problem for discrete‐time systems with multiple delays in single input channel is considered. In this paper, we provide an approach without resorting to system state augmentation. The optimal tracking control is given in terms of the current state, the previous inputs, and the output of an auxiliary backward deterministic delay system which is formulated for the first time in this paper. The solution relies on a Riccati difference equation of the same dimension as the plant (ignoring the delays). The key to our development is the establishment of a duality between the optimal tracking control and the optimal smoothing estimation of an associated stochastic backward system as well as the introduction of the auxiliary backward deterministic delay system. An analysis of the computational complexity of the proposed approach and its comparison with that of the augmentation method, which is to incorporate the delayed inputs into the augmented state, are provided. An example is given to demonstrate the effectiveness of the results. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
11.
12.
The problem of global asymptotic tracking by output feedback is studied for a class of nonminimum‐phase nonlinear systems in output feedback form. It is proved that the problem is solvable by an n‐dimensional output feedback controller under the two conditions: (a) the nonminimum‐phase nonlinear system can be rendered minimum‐phase by a virtual output; and (b) the internal dynamics of the nonlinear system driven by a desired signal and its derivatives has a bounded solution trajectory. With the help of a new coordinate transformation, a constructive method is presented for the design of a dynamic output tracking controller. An example is given to validate the proposed output feedback tracking control scheme. 相似文献
13.
This paper investigates the finite‐time output tracking for a class of switched nonlinear systems in p‐normal form. Compared with the existing results, the restrictions on power orders of the system are relaxed. Using the convex combination method and the adding a power integrator technique, a state‐dependent switching and law, and state feedback controllers of individual subsystems are constructed. It is shown that all states of the closed‐loop system are bounded, and the tracking error can converge to a small neighborhood of zero in finite time. An example is provided to show the effectiveness of the proposed method. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
14.
This paper presents the novel results for stabilizing uncertain standard discrete‐time fuzzy singularly perturbed systems (SPSs) via a state feedback control law. Two standard discrete‐time fuzzy SPSs are constructed firstly by using the Takagi‐Sugeno (T‐S) fuzzy model. Based on a matrix spectral norm approach, two new ε‐dependent stability conditions are derived, which guarantee the resulting closed‐loop systems are asymptotically stable. The gains of controllers are obtained by solving a set of ε‐dependent linear matrix inequalities (LMIs). In contrast to the existing results, the proposed methods have two advantages: (i) the designed controllers can overcome the external disturbances and parameter uncertainty; and (ii) the upper bound of ε is improved, especially it is not required to be smaller than one. Examples are provided to illustrate the reduced conservatism of our results. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society 相似文献
15.
In this paper, a nonlinear minimization approach is proposed for multiobjective and structured controls for discrete‐time systems. The problem of finding multiobjective and structured controls for discrete‐time systems is represented as a quadratic matrix inequality problem. It is shown that the problem is reduced to a nonlinear minimization problem that has a concave objective function and linear matrix inequality constraints. An algorithm for the nonlinear minimization problem is proposed, which is easily implemented with existing semidefinite programming algorithms. The validity of the proposed algorithm is illustrated by comparisons with existing methods. In addition, applications of this work are demonstrated via numerical examples. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
16.
Stabilization of linear discrete‐time networked control systems via protocol and controller co‐design 下载免费PDF全文
This paper investigates the stabilization problem for networked control systems (NCSs) with communication constraint and packet loss. The communication constraint considered is that only one network node is allowed to access a shared communication channel during one time‐slot, and a feedback control is performed with only partially available measurements and control inputs. By taking random packet loss into consideration, a stochastic switched system model is presented to describe the NCS. A sufficient condition is derived for the NCS to be mean‐square exponentially stable, and it is shown that the system performance specified by the exponential decay rate critically depends on the network accessing rates (NARs) of the network nodes and the packet loss probability. The state feedback controller and scheduling protocol, which allocates the NARs, are co‐designed such that the NCS achieves a minimal decay rate. Finally, an illustrative example is given to show the effectiveness of the proposed design approach. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
17.
Jun Zhao 《国际强度与非线性控制杂志
》2015,25(3):430-442
》2015,25(3):430-442
This paper studies the problem of H ∞ output tracking control for a class of discrete‐time switched systems. Neither the measurability of the system state nor the solvability of the output tracking control problem for each individual subsystem is required. We design controllers for subsystems and a switching law to solve the H ∞ output tracking problem for the switched system. The designed controllers use only the measured output feedback, and the switching law is based on the measured output tracking error. In addition, the quadratic function corresponding to each subsystem is not required to be positive definite. A numerical example is provided to demonstrate the feasibility and validity of the proposed design method. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
18.
This paper focuses on the analysis and the design of event‐triggering scheme for discrete‐time systems. Both static event‐triggering scheme (SETS) and adaptive event‐triggering scheme (AETS) are presented for discrete‐time nonlinear and linear systems. What makes AETS different from SETS is that an auxiliary dynamic variable satisfying a certain difference equation is incorporated into the event‐triggering condition. The sufficient conditions of asymptotic stability of the closed‐loop event‐triggered control systems under both two triggering schemes are given. Especially, for the linear systems case, the minimum time between two consecutive control updates is discussed. Also, the quantitative relation among the system parameters, the preselected triggering parameters in AETS, and a quadratic performance index are established. Finally, the effectiveness and respective advantage of the proposed event‐triggering schemes are illustrated on a practical example. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
19.
The paper deals with the control problem of discrete‐time nonlinear systems. The main contribution of this note is to present conditions that assure the existence of stationary policies that generate lower bounds for the minimal long‐run average cost. These lower bounds coincide with the optimal solution when a mild convergence assumption holds. To illustrate the results, the paper presents an application for the simultaneous state‐feedback control problem, and the derived strategy is used to design a real‐time simultaneous control for two direct current motor devices. The dynamics of these two devices are written in terms of a nonlinear algebraic matrix recurrence, which in turn represents a particular case for our general nonlinear approach. The optimal gain for the corresponding simultaneous state‐feedback problem is obtained, and such a gain was implemented in a laboratory testbed to control simultaneously the two direct current motors. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
20.
This paper studies the problem of designing interval observers for a family of discrete‐time nonlinear systems subject to parametric uncertainties and external disturbances. The design approach states that the interval observers are constituted by a couple of preserving order observers, one providing an upper estimation of the state while the other provides a lower one. The design aim is to apply the cooperative and dissipative properties to the discrete‐time estimation error dynamics in order to guarantee that the upper and lower estimations are always above and below the true state trajectory for all times, while both estimations asymptotically converge towards a neighborhood of the true state values. The approach represents an extension to the original method proposed by the authors, which focuses on the continuous‐time nonlinear systems. In some situations, the design conditions can be formulated as bilinear matrix inequalities (BMIs) and/or linear matrix inequalities (LMIs). Two simulation examples are provided to show the effectiveness of the design approach. 相似文献