首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonvolatile ferroelectric poly(vinylidene fluoride‐co‐trifluoroethylene) memory based on an organic thin‐film transistor with inkjet‐printed dodecyl‐substituted thienylenevinylene‐thiophene copolymer (PC12TV12T) as the active layer is developed. The memory window is 4.5 V with a gate voltage sweep of ?12.5 V to 12.5 V. The field effect mobility, on/off ratio, and gate leakage current are 0.1 cm2/Vs, 105, and 10?10 A, respectively. Although the retention behaviors should be improved and optimized, the obtained characteristics are very promising for future flexible electronics.  相似文献   

2.
Organic non‐volatile memory (ONVM) based on pentacene field‐effect transistors (FETs) has been fabricated using various chargeable thin polymer gate dielectrics—termed electrets—onto silicon oxide insulating layers. The overall transfer curve of organic FETs is significantly shifted in both positive and negative directions and the shifts in threshold voltage (VTh) can be systemically and reversibly controlled via relatively brief application of the appropriate external gate bias. The shifted transfer curve is stable for a relatively long time—more than 105 s. However, this significant reversible shift in VTh is evident only in OFETs with non‐polar and hydrophobic polymer electret layers. Moreover, the magnitude of the memory window in this device is inversely proportional to the hydrophilicity (determined from the water contact angle) and dielectric polarity (determined from the dielectric constant), respectively. Memory behaviors of ONVM originate from charge storage in polymer gate electret layers. Therefore, the small shifts in VTh in ONVM with hydrophilic and polar polymers may be due to very rapid dissipation of transferred charges through the conductive channels which form from dipoles, residual moisture, or ions in the polymer electret layers. It is verified that the surface or bulk conductivities of polymer gate electret layers played a critical role in determining the non‐volatile memory properties.  相似文献   

3.
Organic field‐effect transistor (FET) memory is an emerging technology with the potential to realize light‐weight, low‐cost, flexible charge storage media. Here, solution‐processed poly[9,9‐dioctylfluorenyl‐2,7‐diyl]‐co‐(bithiophene)] (F8T2) nano floating gate memory (NFGM) with a top‐gate/bottom‐contact device configuration is reported. A reversible shift in the threshold voltage (VTh) and reliable memory characteristics was achieved by the incorporation of thin Au nanoparticles (NPs) as charge storage sites for negative charges (electrons) at the interface between polystyrene and cross‐linked poly(4‐vinylphenol). The F8T2 NFGM showed relatively high field‐effect mobility (µFET) (0.02 cm2 V?1 s?1) for an amorphous semiconducting polymer with a large memory window (ca. 30 V), a high on/off ratio (more than 104) during writing and erasing with an operation voltage of 80 V of gate bias in a relatively short timescale (less than 1 s), and a retention time of a few hours. This top‐gated polymer NFGM could be used as an organic transistor memory element for organic flash memory.  相似文献   

4.
Polymer ferroelectric‐gate field effect transistors (Fe‐FETs) employing ferroelectric polymer thin films as gate insulators are highly attractive as a next‐generation non‐volatile memory. Furthermore, polymer Fe‐FETs have been recently of interest owing to their capability of storing data in more than 2 states in a single device, that is, they have multi‐level cell (MLC) operation potential for high density data storage. However, among a variety of technological issues of MLC polymer Fe‐FETs, the requirement of high voltage for cell operation is one of the most urgent problems. Here, a low voltage operating MLC polymer Fe‐FET memory with a high dielectric constant (k) ferroelectric polymer insulator is presented. Effective enhancement of capacitance of the ferroelectric gate insulator layer is achieved by a simple binary solution‐blend of a ferroelectric poly(vinylidene fluoride‐co‐trifluoroethylene) (PVDF‐TrFE) (k ≈ 8) with a relaxer high‐k poly(vinylidene‐fluoride–trifluoroethylene–chlorotrifluoroethylene) (PVDF‐TrFE‐CTFE) (k ≈ 18). At optimized conditions, a ferroelectric insulator with a PVDF‐TrFE/PVDF‐TrFE‐CTFE (10/5) blend composition enables the discrete six‐level multi‐state operation of a MLC Fe‐FET at a gate voltage sweep of ±18 V with excellent data retention and endurance of each state of more than 104 s and 120 cycles, respectively.  相似文献   

5.
Coupling between non‐toxic lead‐free high‐k materials and 2D semiconductors is achieved to develop low voltage field effect transistors (FETs) and ferroelectric non‐volatile memory transistors as well. In fact, low voltage switching ferroelectric memory devices are extremely rare in 2D electronics. Now, both low voltage operation and ferroelectric memory function have been successfully demonstrated in 2D‐like thin MoS2 channel FET with lead‐free high‐k dielectric BaxSr1‐xTiO3 (BST) oxides. When the BST surface is coated with a 5.5‐nm‐ultrathin poly(methyl methacrylate) (PMMA)‐brush for improved roughness, the MoS2 FET with BST (x = 0.5) dielectric results in an extremely low voltage operation at 0.5 V. Moreover, the BST with an increased Ba composition (x = 0.8) induces quite good ferroelectric memory properties despite the existence of the ultrathin PMMA layer, well switching the MoS2 FET channel states in a non‐volatile manner with a ±3 V low voltage pulse. Since the employed high‐k dielectric and ferroelectric oxides are lead‐free in particular, the approaches for applying high‐k BST gate oxide for 2D MoS2 FET are not only novel but also practical towards future low voltage nanoelectronics and green technology.  相似文献   

6.
High‐performance, air‐stable, p‐channel WSe2 top‐gate field‐effect transistors (FETs) using a bilayer gate dielectric composed of high‐ and low‐k dielectrics are reported. Using only a high‐k Al2O3 as the top‐gate dielectric generally degrades the electrical properties of p‐channel WSe2, therefore, a thin fluoropolymer (Cytop) as a buffer layer to protect the 2D channel from high‐k oxide forming is deposited. As a result, a top‐gate‐patterned 2D WSe2 FET is realized. The top‐gate p‐channel WSe2 FET demonstrates a high hole mobility of 100 cm2­ V?1 s?1 and a ION/IOFF ratio > 107 at low gate voltages (VGS ca. ?4 V) and a drain voltage (VDS) of ?1 V on a glass substrate. Furthermore, the top‐gate FET shows a very good stability in ambient air with a relative humidity of 45% for 7 days after device fabrication. Our approach of creating a high‐k oxide/low‐k organic bilayer dielectric is advantageous over single‐layer high‐k dielectrics for top‐gate p‐channel WSe2 FETs, which will lead the way toward future electronic nanodevices and their integration.  相似文献   

7.
Highly stretchable, high‐mobility, and free‐standing coplanar‐type all‐organic transistors based on deformable solid‐state elastomer electrolytes are demonstrated using ionic thermoplastic polyurethane (i‐TPU), thereby showing high reliability under mechanical stimuli as well as low‐voltage operation. Unlike conventional ionic dielectrics, the i‐TPU electrolyte prepared herein has remarkable characteristics, i.e., a large specific capacitance of 5.5 µF cm?2, despite the low weight ratio (20 wt%) of the ionic liquid, high transparency, and even stretchability. These i‐TPU‐based organic transistors exhibit a mobility as high as 7.9 cm2 V?1 s?1, high bendability (Rc, radius of curvature: 7.2 mm), and good stretchability (60% tensile strain). Moreover, they are suitable for low‐voltage operation (VDS = ?1.0 V, VGS = ?2.5 V). In addition, the electrical characteristics such as mobility, on‐current, and threshold voltage are maintained even in the concave and convex bending state (bending tensile strain of ≈3.4%), respectively. Finally, free‐standing, fully stretchable, and semi‐transparent coplanar‐type all‐organic transistors can be fabricated by introducing a poly(3,4‐ethylenedioxythiophene):polystyrene sulfonic acid layer as source/drain and gate electrodes, thus achieving low‐voltage operation (VDS = ?1.5 V, VGS = ?2.5 V) and an even higher mobility of up to 17.8 cm2 V?1 s?1. Moreover, these devices withstand stretching up to 80% tensile strain.  相似文献   

8.
Tellurium (Te), as an elementary material, has attracted intense attention due to its potentially novel properties. However, it is still a great challenge to realize high‐quality 2D Te due to its helical chain structure. Here, ultrathin Te flakes (5 nm) are synthesized via hydrogen‐assisted chemical vapor deposition method. The density functional theory calculations and experiments confirm the growth mechanism, which can be ascribed to the formation of volatile intermediates increasing vapor pressure of the source and promoting the reaction. Impressively, the Te flake‐based transistor shows high on/off ratio ≈104, ultralow off‐state current ≈8 × 10?13 A, as well as a negligible hysteresis due to reducing thermally activated defects at 80 K. Moreover, Te‐flake‐based phototransistor demonstrates giant gate‐dependent photoresponse: when gate voltage varies from ?70 to 70 V, Ion/Ioff is increased by ≈40‐fold. The hydrogen‐assisted strategy may provide a new approach for synthesizing other high quality 2D elementary materials.  相似文献   

9.
The effects of using a blocking dielectric layer and metal nanoparticles (NPs) as charge‐trapping sites on the characteristics of organic nano‐floating‐gate memory (NFGM) devices are investigated. High‐performance NFGM devices are fabricated using the n‐type polymer semiconductor, poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} (P(NDI2OD‐T2)), and various metal NPs. These NPs are embedded within bilayers of various polymer dielectrics (polystyrene (PS)/poly(4‐vinyl phenol) (PVP) and PS/poly(methyl methacrylate) (PMMA)). The P(NDI2OD‐T2) organic field‐effect transistor (OFET)‐based NFGM devices exhibit high electron mobilities (0.4–0.5 cm2 V?1 s?1) and reliable non‐volatile memory characteristics, which include a wide memory window (≈52 V), a high on/off‐current ratio (Ion/Ioff ≈ 105), and a long extrapolated retention time (>107 s), depending on the choice of the blocking dielectric (PVP or PMMA) and the metal (Au, Ag, Cu, or Al) NPs. The best memory characteristics are achieved in the ones fabricated using PMMA and Au or Ag NPs. The NFGM devices with PMMA and spatially well‐distributed Cu NPs show quasi‐permanent retention characteristics. An inkjet‐printed flexible P(NDI2OD‐T2) 256‐bit transistor memory array (16 × 16 transistors) with Au‐NPs on a polyethylene naphthalate substrate is also fabricated. These memory devices in array exhibit a high Ion/Ioff (≈104 ± 0.85), wide memory window (≈43.5 V ± 8.3 V), and a high degree of reliability.  相似文献   

10.
Organic nonvolatile transistor‐type memory (ONVM) devices are developed using self‐assembled nanowires of n‐type semiconductor, N,N′‐bis(2‐phenylethyl)‐perylene‐3,4:9,10‐tetracarboxylic diimide (BPE‐PTCDI). The effects of nanowire dimension and silane surface treatment on the memory characteristics are explored. The diameter of the nanowires is reduced by increasing the non‐solvent methanol composition, which led to the enhanced crystallinity and high field‐effect mobility. The BPE‐PTCDI nanowires with small diameters induce high electrical fields and result in a large memory window (the shifting of the threshold voltage, ΔVth). The ΔVth value of BPE‐PTCDI nanowire based ONVM device on the bare substrate can reach 51 V, which is significantly larger than that of thin film. The memory window is further enhanced to 78 V with the on/off ratio of 2.1 × 104 and the long retention time (104 s), using a hydrophobic surface (such as trichloro(phenyl)silane‐treated surface). The above results demonstrate that the n‐type semiconducting nanowires have potential applications in high performance non‐volatile transistor memory devices.  相似文献   

11.
The very recently rediscovered group‐10 transition metal dichalcogenides (TMDs) such as PtS2 and PtSe2, have joined the 2D material family as potentially promising candidates for electronic and optoeletronic applications due to their theoretically high carrier mobility, widely tunable bandgap, and ultrastability. Here, the first exploration of optoelectronic application based on few‐layered PtS2 using h‐BN as substrate is presented. The phototransistor exhibits high responsivity up to 1.56 × 103 A W?1 and detectivity of 2.9 × 1011 Jones. Additionally, an ultrahigh photogain ≈2 × 106 is obtained at a gate voltage V g = 30 V, one of the highest gain among 2D photodetectors, which is attributed to the existence of trap states. More interestingly, the few‐layered PtS2 phototransistor shows a back gate modulated photocurrent generation mechanism, that is, from the photoconductive effect dominant to photogating effect dominant via tuning the gate voltage from the OFF state to the ON state. Such good properties combined with gate‐controlled photoresponse of PtS2 make it a competitive candidate for future 2D optoelectronic applications.  相似文献   

12.
Nonvolatile memories based on van der Waals heterostructures have been proved to be promising candidates for next‐generation data storage devices. However, little attention has been focused on the structure with separated floating and control gates (the floating gates and control gates distribute at the different side of the channels), which were recently predicted to be capable of further improving device performance. Here, nonvolatile multibit optoelectronic memories are demonstrated using MoS2, hexagonal boron nitride (h‐BN), and graphene in a top‐floating‐gated structure. With separated top graphene floating gate, the devices show a large memory window (≈95 V) via sweeping gate voltage from 80 to ?80 V, a high on/off ratio (≈106) with an ultralow dark current (≈10?14 A), as well as excellent retention characteristic (≈104 s) and cyclic endurance. In addition, these devices can also be erased by a laser illumination with broadband spectrum after being electrically programmed. For the multilevel storage property, 7/6 stages controlled by different electrical operations, and 13/6/3 stages by different laser pulse illuminations are gained. The obtained results show a promising performance for nonvolatile optoelectronic memory using a top‐floating‐gated structure.  相似文献   

13.
As one of the emerging new transition‐metal dichalcogenides materials, molybdenum ditelluride (α‐MoTe2) is attracting much attention due to its optical and electrical properties. This study fabricates all‐2D MoTe2‐based field effect transistors (FETs) on glass, using thin hexagonal boron nitride and thin graphene in consideration of good dielectric/channel interface and source/drain contacts, respectively. Distinguished from previous works, in this study, all 2D FETs with α‐MoTe2 nanoflakes are dual‐gated for driving higher current. Moreover, for the present 2D dual gate FET fabrications on glass, all thermal annealing and lithography processes are intentionally exempted for fully non‐lithographic method using only van der Waal's forces. The dual‐gate MoTe2 FET displays quite a high hole and electron mobility over ≈20 cm2 V?1 s?1 along with ON/OFF ratio of ≈105 in maximum as an ambipolar FET and also demonstrates high drain current of a few tens‐to‐hundred μA at a low operation voltage. It appears promising enough to drive organic light emitting diode pixels and NOR logic functions on glass.  相似文献   

14.
Solution‐processed metal‐oxide thin films based on high dielectric constant (k) materials have been extensively studied for use in low‐cost and high‐performance thin‐film transistors (TFTs). Here, scandium oxide (ScOx) is fabricated as a TFT dielectric with excellent electrical properties using a novel water‐inducement method. The thin films are annealed at various temperatures and characterized by using X‐ray diffraction, atomic‐force microscopy, X‐ray photoelectron spectroscopy, optical spectroscopy, and a series of electrical measurements. The optimized ScOx thin film exhibits a low‐leakage current density of 0.2 nA cm?2 at 2 MV cm?1, a large areal capacitance of 460 nF cm?2 at 20 Hz and a permittivity of 12.1. To verify the possible applications of ScOx thin films as the gate dielectric in complementary metal oxide semiconductor (CMOS) electronics, they were integrated in both n‐type InZnO (IZO) and p‐type CuO TFTs for testing. The water‐induced full oxide IZO/ScOx TFTs exhibit an excellent performance, including a high electron mobility of 27.7 cm2 V?1 s?1, a large current ratio (Ion/Ioff) of 2.7 × 107 and high stability. Moreover, as far as we know it is the first time that solution‐processed p‐type oxide TFTs based on a high‐k dielectric are achieved. The as‐fabricated p‐type CuO/ScOx TFTs exhibit a large Ion/Ioff of around 105 and a hole mobility of 0.8 cm2 V?1 at an operating voltage of 3 V. To the best of our knowledge, these electrical parameters are among the highest performances for solution‐processed p‐type TFTs, which represents a great step towards the achievement of low‐cost, all‐oxide, and low‐power consumption CMOS logics.  相似文献   

15.
Organic field‐effect transistors suffer from ultra‐high operating voltages in addition to their relative low mobility. A general approach to low‐operating‐voltage organic field‐effect transistors (OFETs) using donor/acceptor buffer layers is demonstrated. P‐type OFETs with acceptor molecule buffer layers show reduced operating voltages (from 60–100 V to 10–20 V), with mobility up to 0.19 cm2 V?1 s?1 and an on/off ratio of 3 × 106. The subthreshold slopes of the devices are greatly reduced from 5–12 V/decade to 1.68–3 V/decade. This favorable combination of properties means that such OFETs can be operated successfully at voltages below 20 V (|VDS| ≤ 20 V, |VGS| ≤ 20 V). This method also works for n‐type semiconductors. The reduced operating voltage and low pinch‐off voltage contribute to the improved ordering of the polycrystalline films, reduced grain boundary resistance, and steeper subthreshold slopes.  相似文献   

16.
High‐performance non‐volatile memory elements based on carbon‐nanotube‐enabled vertical field‐effect transistors (CN‐VFETs) are demonstrated. A thin crosslinking polymer layer, benzocyclobutene (BCB), on top of the gate dielectric acts as the charge storage layer. This results in a large, fully gate sweep programmable, hysteresis in the cyclic transfer curves exhibiting on/off ratios >4 orders of magnitude. The carbon nanotube random network source electrode facilitates charge injection into the charge storage layer, realizing the strong memory effect without sacrificing mobility in the vertical channel. Given their intrinsically simple fabrication and compact size CN‐VFETs could provide a path to cost‐effective, high‐density organic memory devices.  相似文献   

17.
The properties of metal oxides with high dielectric constant (k) are being extensively studied for use as gate dielectric alternatives to silicon dioxide (SiO2). Despite their attractive properties, these high‐k dielectrics are usually manufactured using costly vacuum‐based techniques. In that respect, recent research has been focused on the development of alternative deposition methods based on solution‐processable metal oxides. Here, the application of the spray pyrolysis (SP) technique for processing high‐quality hafnium oxide (HfO2) gate dielectrics and their implementation in thin film transistors employing spray‐coated zinc oxide (ZnO) semiconducting channels are reported. The films are studied by means of admittance spectroscopy, atomic force microscopy, X‐ray diffraction, UV–Visible absorption spectroscopy, FTIR, spectroscopic ellipsometry, and field‐effect measurements. Analyses reveal polycrystalline HfO2 layers of monoclinic structure that exhibit wide band gap (≈5.7 eV), low roughness (≈0.8 nm), high dielectric constant (k ≈ 18.8), and high breakdown voltage (≈2.7 MV/cm). Thin film transistors based on HfO2/ZnO stacks exhibit excellent electron transport characteristics with low operating voltages (≈6 V), high on/off current modulation ratio (~107) and electron mobility in excess of 40 cm2 V?1 s?1.  相似文献   

18.
Two types of transition metal dichalcogenide (TMD) transistors are applied to demonstrate their possibility as switching/driving elements for the pixel of organic light‐emitting diode (OLED) display. Such TMD materials are 6 nm thin WSe2 and MoS2 as a p‐type and n‐type channel, respectively, and the pixel is thus composed of external green OLED and nanoscale thin channel field effect transistors (FETs) for switching and driving. The maximum mobility of WSe2‐FETs either as switch or as driver is ≈30 cm2 V?1 s?1, in linear regime of the gate voltage sweep range. Digital (ON/OFF‐switching) and gray‐scale analogue operations of OLED pixel are nicely demonstrated. MoS2 nanosheet FET‐based pixel is also demonstrated, although limited to alternating gray scale operation of OLED. Device stability issue is still remaining for future study but TMD channel FETs are very promising and novel for their applications to OLED pixel because of their high mobility and I D ON/OFF ratio.  相似文献   

19.
A novel application of ethylene‐norbornene cyclic olefin copolymers (COC) as gate dielectric layers in organic field‐effect transistors (OFETs) that require thermal annealing as a strategy for improving the OFET performance and stability is reported. The thermally‐treated N,N′‐ditridecyl perylene diimide (PTCDI‐C13)‐based n‐type FETs using a COC/SiO2 gate dielectric show remarkably enhanced atmospheric performance and stability. The COC gate dielectric layer displays a hydrophobic surface (water contact angle = 95° ± 1°) and high thermal stability (glass transition temperature = 181 °C) without producing crosslinking. After thermal annealing, the crystallinity improves and the grain size of PTCDI‐C13 domains grown on the COC/SiO2 gate dielectric increases significantly. The resulting n‐type FETs exhibit high atmospheric field‐effect mobilities, up to 0.90 cm2 V?1 s?1 in the 20 V saturation regime and long‐term stability with respect to H2O/O2 degradation, hysteresis, or sweep‐stress over 110 days. By integrating the n‐type FETs with p‐type pentacene‐based FETs in a single device, high performance organic complementary inverters that exhibit high gain (exceeding 45 in ambient air) are realized.  相似文献   

20.
In recent years, 2D layered materials have been considered as promising photon absorption channel media for next‐generation phototransistors due to their atomic thickness, easily tailored single‐crystal van der Waals heterostructures, ultrafast optoelectronic characteristics, and broadband photon absorption. However, the photosensitivity obtained from such devices, even under a large bias voltage, is still unsatisfactory until now. In this paper, high‐sensitivity phototransistors based on WS2 and MoS2 are proposed, designed, and fabricated with gold nanoparticles (AuNPs) embedded in the gate dielectric. These AuNPs, located between the tunneling and blocking dielectric, are found to enable efficient electron trapping in order to strongly suppress dark current. Ultralow dark current (10?11 A), high photoresponsivity (1090 A W?1), and high detectivity (3.5 × 1011 Jones) are obtained for the WS2 devices under a low source/drain and a zero gate voltage at a wavelength of 520 nm. These results demonstrate that the floating‐gate memory structure is an effective configuration to achieve high‐performance 2D electronic/optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号