首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The main objective of this work is study the influence of the methyl mathacrylate maleic anhydride copolymer (MMA-MA) compatibilizer properties such as molecular weight and maleic anhydride content in the characteristics of amorphous polyamide and styrene acrylonitrile copolymer (aPA/SAN) blends, correlating their interfacial characteristics and phase morphology. The blends aPA/SAN, with and without the compatibilizer, prepared were characterized by transmission electron microscopy (TEM) and small angle X-rays scattering (SAXS). The results show that the maleic anhydride concentration has a more significant effect on the blend properties than the molecular weight of the MMA-MA copolymer. Even though the system aPA/SAN is thermodynamically immiscible, it shows morphology of phases with small particles of SAN. The addition of MMA-MA copolymer with high degrees of MA led to an increase of the SAN phase particle size. With SAXS technique, it was possible to determine the interface thickness and the results shows that the characteristics of the interface do not change with the variation of the compatibilizer characteristics. The results observed in this work indicate that the viscosity ratio is very important factor on the formation of the phase morphology.  相似文献   

2.
In a systematic manner, the roles of MWNTs as filler and styrene acrylonitrile copolymer‐graft‐maleic anhydride (SAN‐MA) as compatibilizer, individually and together, on dynamic‐mechanical behavior of polycarbonate (PC)‐rich/acrylonitrile butadiene styrene terpolymer (ABS) blend were studied. The investigations were performed using small‐scale mixing in a one‐step procedure with a fixed MWNTs content of 0.75 wt% and a blend composition of PC/ABS = 70/30 w/w. PC/SAN blends and nanocomposites as simpler model system for PC/ABS were also studied to reveal the role of the rubbery polybutadiene (PB) fraction. It is found that the tendency of MWNTs to localize within the PC component in compatibilized PC/ABS was lower than in compatibilized PC/SAN blends. Dynamic mechanical analysis (DMA) revealed the dual role of SAN‐MA as blend compatibilizer and also promoter of MWNTs migration towards PC, where SAN‐MA to MWNTs weight ratio varied between 1 and 4. At the compatibilizer/MWNTs weight ratio of 1, MWNTs localized in PC component of the blends whereas increasing the compatibilizer/MWNTs ratio to 4 led to migration of MWNTs toward SAN or ABS component. In DMA studies, loss modulus normalization of the nanocomposites revealed the coexistence of mobilized and immobilized regions within the nanocomposite structure, as a result of MWNTs and compatibilizer loading. POLYM. ENG. SCI., 54:2696–2706, 2014. © 2014 Society of Plastics Engineers  相似文献   

3.
Poly(methyl methacrylate‐co‐maleic anhydride) copolymers (MMA‐MA) have been synthesized by solution method, using toluene as solvent and benzoyl peroxide as initiator. The MMA‐MA copolymers were characterized by size exclusion chromatography, Fourier transforms infrared spectroscopy (FTIR), and titration. It was found that the modified polymerization procedure used in this work was more effective in controlling the molecular weight when adding different amounts of maleic anhydride (MA) than procedures previously used. In spite of the significant difference in reactivity ratios between MMA and MA, up to 50% of the MA added to the reactor was incorporated into the copolymer. The evidences for reactions of the MA groups of the MMA‐MA copolymer with the amine end groups of the amorphous polyamide (aPA) during melt blending was obtained by rheological measurements. In this work, the molecular weight and the content of MA reactive functional groups in the MMA‐MA copolymer were varied independently and its effects on the interaction with aPA were studied. It was observed that a compromise between molecular weight and the level of reactive functional group of the compatibilizer should be sought to improve the compatibilization of the polymer systems. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

4.
Styrene‐acrylonitrile random copolymer (SAN) and polyarylate (PAr) block copolymer were applied as a reactive compatibilizer for polyamide‐6 (PA‐6)/acrylonitrile‐butadiene‐styrene (ABS) copolymer blends. The SAN–PAr block copolymer was found to be effective for compatibilization of PA‐6/ABS blends. With the addition of 3.0–5.0 wt % SAN–PAr block copolymer, the ABS‐rich phase could be reduced to a smaller size than 1.0 μm in the 70/30 and 50/50 PA‐6/ABS blends, although it was several microns in the uncompatibilized blends. As a result, for the blends compatibilized with 3–5 wt % block copolymer the impact energy absorption reached the super toughness region in the 70/30 and 50/50 PA‐6/ABS compositions. The compatibilization mechanism of PA‐6/ABS by the SAN–PAr block copolymer was investigated by tetrahydrofuran extraction of the SAN–PAr block copolymer/PA‐6 blends and the model reactions between the block copolymer and low molecular weight compounds. The results of these experiments indicated that the SAN–PAr block copolymer reacted with the PA‐6 during the melt mixing process via an in situ transreaction between the ester units in the PAr chain and the terminal amine in the PA‐6. As a result, SAN–PAr/PA‐6 block copolymers were generated during the melt mixing process. The SAN–PAr block copolymer was supposed to compatibilize the PA‐6 and ABS blend by anchoring the PAr/PA‐6 and SAN chains to the PA‐6 and ABS phases, respectively. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2300–2313, 2002  相似文献   

5.
The addition of maleic anhydride grafted polybutadiene (PB‐g‐MAH) can greatly improve the compatibility of polyamide 66 (PA66)/acrylonitrile‐butadiene‐styrene copolymer (ABS) blends. Unlike the commonly used compatibilizers in polyamide/ABS blends, PB‐g‐MAH is compatible with the ABS particles' core phase polybutadiene (PB), rather than the shell styrene‐acrylonitrile (SAN). The compatibility and interaction of the components in the blends were characterized by Fourier transform‐infrared spectra (FTIR), Molau tests, melt flow index (MFI), dynamic mechanical analyses (DMA), and scanning electron microscopic (SEM) observations. The results show that PB‐g‐MAH can react with the amino end groups in PA66 while entangle with the PB phase in ABS. In this way, the compatibilizer anchors at the interface of PA66/ABS blend. The morphology study of the fracture sections before and after tensile test reveals that the ABS particles were dispersed uniformly in the PA66 matrix and the interfacial adhesion between PA66 and ABS was increased significantly. The mechanical properties of the blends thus were enhanced with the improving of the compatibility. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

6.
The ductile–brittle transition temperatures were determined for compatibilized nylon 6/acrylonitrile‐butadiene‐styrene (PA6/ABS) copolymer blends. The compatibilizers used for those blends were methyl methacrylate‐co‐maleic anhydride (MMA‐MAH) and MMA‐co‐glycidyl methacrylate (MMA‐GMA). The ductile–brittle transition temperatures were found to be lower for blends compatibilized through maleate modified acrylic polymers. At room temperature, the PA6/ABS binary blend was essentially brittle whereas the ternary blends with MMA‐MAH compatibilizer were supertough and showed a ductile–brittle transition temperature at ?10°C. The blends compatibilized with maleated copolymer exhibited impact strengths of up to 800 J/m. However, the blends compatibilized with MMA‐GMA showed poor toughness at room temperature and failed in a brittle manner at subambient temperatures. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2643–2647, 2003  相似文献   

7.
The morphology and mechanical properties of polycarbonate (PC) blends with rubber‐toughened styrene–maleic anhydride copolymer materials (TSMA) were investigated and compared with the properties of blends of PC with acrylonitrile–butadiene–styrene (ABS) materials. The PC/TSMA blends showed similar composition dependence of properties as the comparable PC/ABS blends. Polycarbonate blends with TSMA exhibited higher notched Izod impact toughness than pure PC under sharp‐notched conditions but the improvements are somewhat less than observed for similar blends with ABS. Since PC is known for its impact toughness except under sharp‐notched conditions, this represents a significant advantage of the rubber‐modified blends. PC blends with styrene–maleic anhydride copolymer (SMA) were compared to those with a styrene–acrylonitrile copolymer (SAN). The trends in blend morphology and mechanical properties were found to be qualitatively similar for the two types of copolymers. PC/SMA blends are nearly transparent or slightly pearlescent. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1508–1515, 1999  相似文献   

8.
Blends of recycled polycarbonate (PC) and acrylonitrile–butadiene–styrene (ABS) were prepared and some mechanical and morphological properties were investigated. To compatibilize these blends, ABS‐g‐(maleic anhydride) (ABS‐g‐MA) and (ethylene–vinyl acetate)‐g‐(maleic anhydride) (EVA‐g‐MA) with similar degree of grafting of 1.5% were used. To compare the effect of the type of compatibilizer on mechanical properties, blends were prepared using 3, 5 and 10 phr of each compatibilizer. A co‐rotating twin‐screw extruder was used for blending. The results showed that ABS‐g‐MA had no significant effect on the tensile strength of the blends while EVA‐g‐MA decreased the tensile strength, the maximum decrease being about 9.6% when using 10 phr of this compatibilizer. The results of notched Charpy impact strength tests showed that EVA‐g‐MA increased the impact strength of blends more than ABS‐g‐MA. The maximum value of this increase occurred when using 5 phr of each compatibilizer, it being about 54% for ABS‐g‐MA and 165% for EVA‐g‐MA. Scanning electron microscopy micrographs showed that the particle size of the dispersed phase was decreased in the continuous phase of PC by using the compatibilizers. Moreover, a blend without compatibilizer showed brittle behaviour while the blends containing compatibilizer showed ductile behaviour in fracture. © 2013 Society of Chemical Industry  相似文献   

9.
The thermal behavior and morphology of multicomponent blends based on PA6, polyamide 6 (PA6)/styrene–acrylonitirle copolymer (SAN), PA6/acrylonitrile–butadiene–styrene terpolymer (ABS), and their compatibilized blends with styrene–acrylonitrile–maleic anhydride copolymer (SANMA) were studied using DSC and SEM. The blends were prepared in a twin‐screw extruder under similar processing conditions, keeping the PA6 content fixed at 50 wt %. It was found that, in all the blends, the second component had a nucleating effect and improved the overall degree and rate of crystallization of PA6, whereas addition of a compatibilizer slightly diminished these effects and resulted in significant changes in the blend morphology. The nucleating effect and consequent changes in the crystallization behavior was attributed to the presence of SAN, which is a common component in all the blends. The Tg of PA6 in the blends with a cocontinuous morphology, due to the connectivity between the phases, is higher than in the blends with a disperse‐type morphology. The compatibilized blends have a lower crystallization rate and nucleation ability with a cocontinuous morphology, whereas the uncompatibilized blends have a higher crystallization rate with a higher nucleation ability and a disperse and/or a coarse cocontinuous morphology. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2753–2759, 2002  相似文献   

10.
The objective of this research is to study the effect of using maleic anhydride‐grafted polyethylene‐octene elastomer (POE‐g‐MA) as a compatibilizer on nylon 6/acrylonitile‐butadiene‐styrene (ABS) copolymer blends. With POE‐g‐MA, nylon 6/ABS at a blending ratio of 80/20 showed an optimal result in modified impact property. Scanning electron microscopy (SEM) revealed that the particle sizes of ABS in the dispersed phase diminished as the amount of the added compatibilizer (POE‐g‐MA) increased. The compatibilizer reduced the surface tension between nylon 6 and ABS, thus increasing the compatibility of the two phases. Furthermore, studies of the rheological behavior of the system showed that the shear viscosity of nylon 6/ABS blends also increased with the introduction of POE‐g‐MA. Finally, dynamic mechanical analysis (DMA) experiments showed that adding POE‐g‐MA dramatically improved the impact strength of the blends at room temperature and low temperatures. Polym. Eng. Sci. 44:2340–2345, 2004. © 2004 Society of Plastics Engineers.  相似文献   

11.
The effect of different mixing protocols in the preparation of PA6/ABS/MMA‐MA (57.5/37.5/5 wt %) blends on their morphological, rheological, thermal, thermomechanical, and mechanical behavior were studied. Despite the second‐phase size reduction due to copolymer incorporation, mixing sequence seems to play an important role in the properties of the blends. When PA6 is blended with the pre‐blended ABS/MMA‐MA system, compatibilizer is preferentially located in ABS phase and a co‐continuous structure is formed. The co‐continuity is believed to be responsible for the enhancements in toughness, but excessive presence of MMA‐MA in ABS phase seems to hamper thermomechanical properties. On the other hand, when ABS is blended with the PA6/MMA‐MA system previously prepared, compatibilizer is preferentially located in PA6 phase and a particle‐in‐matrix morphology is observed. The absence of excessive amount of MMA‐MA in ABS phase avoids the negative effect on thermomechanical resistance, however enhancements in toughness are not so pronounced. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43612.  相似文献   

12.
Blends of polyamide6 (PA6) and acrylonitrile butadiene styrene (ABS) were prepared in presence or absence of up to 5 wt % of a reactive compatibilizer [styrene maleic anhydride copolymer (SMA) modified with 5 wt % multiwall carbon nanotubes (MWNT)] by melt‐mixing using conical twin screw microcompounder where the ABS content was varied from 20 to 50 wt %. The melt viscosity of the blends was significantly enhanced in presence of SMA modified by multiwall carbon nanotubes due to the reactive compatibilization, which leads to stabilized interphase in the blends. Furthermore, the presence of MWNT in the compatibilizer phase led to additional increase in viscosity and storage modulus. Morphological studies revealed the presence of either droplet‐dispersed or cocontinuous type depending on the blend compositions. Further, reactive compatibilization led to a significant change in the morphology, namely a structure refining, which was enhanced by MWNT presence as observed from SEM micrographs. DSC crystallization studies indicated a delayed crystallization response of PA6 in presence of ABS presumably due to high melt viscosity of ABS. The crystallization temperature and the degree of crystallinity were strongly dependent on the type of morphology and content of reactive compatibilizer, whereas the presence of MWNT had an additional influence. SAXS studies revealed the formation of thinner and less perfect crystallites of PA6 phase in the blends, which showed cocontinuous morphology. A unique observation of multiple scattering maxima at higher q region has been found in the blends of cocontinuous morphology, which was observed to be successively broadened in presence of the compatibilizer. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

13.
The impact behaviors of nanoclay‐filled nylon 6 (nano‐nylon 6) blended with poly(acrylonitrile–butadiene–styrene) terpolymers (ABS) prepared through a twin screw mixing process were investigated here using metallocene polyethylene grafted maleic anhydride (POE‐g‐MA) as a compatibilizer to enhance the interface interaction. No clear effect of compatibilizer on the dispersion of clay and crystalline structure of nano‐nylon 6 has been observed. In view of morphology and rheological behaviors, the effect of compatibilizer on the mechanical properties could be elucidated. It is found that impact strength increases with the addition of compatibilizer at various ABS compositions. Similar effects are also observed with decreasing test temperature at the nano‐nylon 6/ABS blend composition of 80/20. As for thermal properties, the heat distortion temperature shows a marginal decrease in the nano‐nylon 6/ABS blends. Rheological behavior indicates that increased viscosity is found for the investigated compatibilized systems. Through morphology observations, the etched ABS particle sizes tend to decrease with the addition of compatibilizer for the blends, but are larger with higher contents of ABS concentrations. Those observations account for impact behaviors of the investigated blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1364–1371, 2006  相似文献   

14.
Polymer alloys have been used as an alternative to obtain polymeric materials with unique physical properties. Generally, the polymer mixture is incompatible, which makes it necessary to use a compatibilizer to improve the interfacial adhesion. Nylon 6 (PA6) is an attractive polymer to use in engineering applications, but it has processing instability and relatively low notched impact strength. In this study, the acrylonitrile–butadiene–styrene (ABS) triblock copolymer was used as an impact modifier for PA6. Poly(methyl methacrylate‐co‐maleic anyhydride) (MMA‐MA) and poly(methyl methacrylate‐co‐glycidyl methacrylate) (MMA‐GMA) were used as compatibilizers for this blend. The morphology and impact strength of the blends were evaluated as a function of blend composition and the presence of compatibilizers. The blends compatibilized with maleated copolymer exhibited an impact strength up to 800 J/m and a morphology with ABS domains more efi8ciently dispersed. Moderate amounts of MA functionality in the compatibilizer (~5%) and small amounts of compatibilizer in the blend (~5%) appear sufficient to improve the impact properties and ABS dispersion. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 842–847, 2003  相似文献   

15.
The effect of simultaneous addition of multiwall carbon nanotubes (MWNTs) and a reactive compatibilizer (styrene maleic anhydride copolymer, SMA) during melt‐mixing on the phase morphology of 80/20 (wt/wt) PA6/ABS blend has been investigated. Morphological analysis through scanning and transmission electron microscopic analysis revealed finer morphology of the blends in presence of SMA + MWNTs. Fourier transform infrared spectroscopic analysis indicated the formation of imide bonds during melt‐mixing. Non‐isothermal crystallization studies exhibited the presence of a majority faction of MWNTs in the PA6 phase of 80/20 (wt/wt) PA6/ABS blend in presence of SMA + MWNTs. Rheological analysis, dynamic mechanical thermal analysis, and thermogravimetric analysis have demonstrated the compatibilization action of simultaneous addition of a reactive compatibilizer (SMA copolymer) and MWNTs in PA6/ABS blends. An attempt has been made to investigate the role of simultaneous addition of SMA copolymer and MWNTs on the morphology of 80/20 (wt/wt) PA6/ABS blend through various characterization techniques. POLYM. ENG. SCI., 55:457–465, 2015. © 2014 Society of Plastics Engineers  相似文献   

16.
The impact strength of the acrylonitrile-co-butadiene-co-styrene terpolymer–poly(2,6-dimethyl-1,4-phenylene oxide (ABS–PPO) blends compatibilized with styrene–acrylonitrile modified with glycidil methacrylate (SAN–GMA) terpolymer can be significantly enhanced by the various processing conditions in reaction extrusion. Four different ABS terpolymers are used depending on the composition of acrylonitrile, styrene, and butadiene. The morphology of polybutadiene latex in ABS-1, ABS-3, and ABS-4 is an agglomerated type, while that of ABS-2 is a bimodal one. The three different methods in in situ compatibilizing extrusion are employed; the simple mixing of ABS and PPO, the simultaneous mixing of ABS and PPO, the reactive compatibilizer SAN–GMA, maleic anhydride (MA; designated A-series), and then the stepwise mixing of the mixtures of ABS–SAN–GMA in the MA-modified PPO (designated B-series). Although the ABS-4–PPO blend depicted the highest impact strength in the simple mixing, the ABS-3B–PPO blend showed the best impact strength in the stepwise mixing. The former behavior may be arisen from the high content of BR, whereas the latter may be due to the agglomerated rubber phase with SAN–GMA. The highest impact strength (47 kg·cm·cm−1) was observed in ABS-3B–PPO at 50/50 with an inclusion of 10 wt % GMA (2) and 1 wt % MA. Thus, the proposed reaction mechanism is an existence of the compatibility between ABS and SAN–GMA and the reactivity between the MA-modified PPO and SAN–GMA. Phase morphology of the ABS-2–PPO and ABS-3–PPO blends were compared, and more efficient dispersion of ABS was observed in the B-series than in the A-series. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 841–852, 1999  相似文献   

17.
The phase morphology developing in immiscible poly(styrene‐co‐acrylonitrile) (SAN)/ethylene–propylene–diene monomer (EPDM) blends was studied with an in situ reactively generated SAN‐g‐EPDM compatibilizer through the introduction of a suitably chosen polymer additive (maleic anhydride) and 2,5‐dimethyl‐2,5‐di‐(t‐butyl peroxy) hexane (Luperox) and dicumyl peroxide as initiators during melt blending. Special attention was paid to the experimental conditions required for changing the droplet morphology for the dispersed phase. Two different mixing sequences (simple and two‐step) were used. The product of two‐step blending was a major phase surrounded by rubber particles; these rubber particles contained the occluded matrix phase. Depending on the mixing sequence, this particular phase morphology could be forced or could occur spontaneously. The composition was stabilized by the formation of the SAN‐g‐EPDM copolymer between the elastomer and addition polymer, which was characterized with Fourier transform infrared. As for the two initiators, the blends with Luperox showed better mechanical properties. Scanning electron microscopy studies revealed good compatibility for the SAN/EPDM blends produced by two‐step blending with this initiator. Dynamic mechanical thermal analysis studies showed that the two‐step‐prepared blend with Luperox had the best compatibility. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
The effects of reactive reinforced interface on the morphology and tensile properties of amorphous polyamide (a-PA) and styrene-acrylonitrile (SAN) copolymer blend have been investigated using styrene maleic anhydride (SMA) copolymer as a reactive compatibilizer. The anhydride groups of SMA copolymer can react with the amine groups of polyamide and form in situ graft copolymers at the a-PA–SAN interfaces during the blend preparation. The interfacial adhesion strength of the reactive reinforced interface was evaluated quantitatively using an asymmetric double cantilever beam fracture test as a function of SMA copolymer content using a model adhesive joint. The interfacial adhesion strength was found to increase with the content of SMA copolymer and then level off. The morphological observations of a-PA–SAN (80/20 w/w) blends showed that the finer dispersion of the SAN domains with rather narrow distribution was obtained by the addition of SMA copolymer into the blends. The trend of morphology change was not in accord with that of the interfacial adhesion strength with respect to the content of SMA copolymer. However, the results of tensile properties showed very similar behavior to the case of the interfacial adhesion strength with respect to SMA content; that is, there was an optimum level of the reactive compatibilizer beyond which the interfacial adhesion strength and tensile strength did not change significantly. These results clearly reveal that tensile properties of polymer blend are highly dependent on the interfacial adhesion strength. Furthermore, it is suggested that the asymmetric double cantilever beam fracture test using a model interface is a useful method to quantify the adhesion strength between the phases in real polymer blends. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1925–1933, 1998  相似文献   

19.
A novel method of enhancing compatibility in PVC/ABS blends is the use of ABS‐grafted‐(maleic anhydride) (ABS‐g‐MAH) as a compatibilizer. In this study, maleic anhydride was grafted onto ABS (initiated by peroxide) in an internal mixer. Grafting degree was determined by a back‐titration method, and certain amounts of the resultant ABS‐g‐MAH were added to PVC/ABS blends during their melt blending in the mixer. The weight ratio of PVC to ABS was kept at 70:30. Evaluation of compatibilization was accomplished via tensile and notched Izod impact tests, scanning electron microscopy (SEM), and rheological studies. According to the SEM micrographs, better dispersion of the rubber phase and its finer size in properly compatibilized blends were indications of better compatibility. Besides, in the presence of a proper amount [5 parts per hundred parts of PVC (php)] of ABS‐g‐MAH, PVC/ABS blends showed significantly higher impact strengths than uncompatibilized blends. This result, in turn, would be an indication of better compatibility. In the presence of 5 php of compatibilizer, the higher complex viscosity and storage modulus, as well as a lower loss modulus and loss factor in the range of frequency studied, indicated stronger interfacial adhesion as a result of interaction between maleic anhydride and the PVC‐SAN matrix. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers  相似文献   

20.
The impact behaviors of nanoclay filled nylon 6 (nano‐nylon 6) or nylon 6 blended with poly(acrylonitrile‐butadiene‐styrene) terpolymers (ABS) were investigated here using polybutadiene grafted maleic anhydride (PB‐g‐MA) as a compatibilizer to enhance interphase interaction. It is found that impact strength increases slightly for nano‐nylon 6/ABS blend system with the addition of compatibilizer at various ABS compositions, but increases to a certain degree for nylon 6/ABS case. Similar effects are also found with decreasing test temperature, especially at a blend composition of 80/20. These discrepancies are attributed to a different degree of available reaction sites from amine group on nano‐nylon 6 and nylon 6 as well as the rigidity of clay in deteriorating toughness. As for thermal properties, the heat distortion temperature shows marginally decrease in the nano‐nylon 6/ABS blend. Through morphology observations, the etched ABS particle sizes tend to decrease with the additions of compatibilizer for both blends, but are larger with higher contents of ABS concentrations. Those observations account for impact behaviors of the investigated blends. POLYM. ENG. SCI., 45:1461–1470, 2005. © 2005 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号