首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two clozapine (CLZ) imprinted polymers were prepared by bulk and precipitation methods. Methacrylic acid and ethylene glycol dimethacrylate (EDMA) were used as functional and crosslinker monomers, respectively. The mean diameter and particle size distribution of the imprinted (P‐MIP) and nonimprinted (P‐NIP) particles obtained in precipitation method were examined. A conventional batch‐adsorption test was applied for characterization of CLZ–polymer interaction. Dissociation constant (KD) and maximum binding sites (Bmax) were calculated using Scatchard analysis. To evaluate the recognition properties of polymers, phenytoin (PTN) binding to each polymer was also studied and compared to CLZ. The imprinting factor (IF) and selectivity factor (α) were also determined for each polymer. Average diameter and polydispersity of P‐MIP were 925 nm and 0.17, respectively. The data for P‐NIP were 1.05 μm and 0.18. The KD, IF, and α values calculated for P‐MIP were 0.45 μM, 3.26, and 17.43, respectively. The data for imprinted polymer, prepared by bulk polymerization (B‐MIP), were 14.5 μM, 1.95, and 3.67. These results demonstrated that precipitation polymerization is a more convenient, more effective, and more reproducible method than bulk polymerization for the synthesis of uniformly sized micron and submicron‐imprinted polymer particles. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
采用溶胶-凝胶方法和表面分子印迹技术,以二氧化硅为载体,鞣花酸为模板分子,3-氨丙基三乙氧基硅烷为功能单体,四乙氧基硅烷为交联剂,在室温下合成鞣花酸分子印迹聚合物(MIPs)。通过扫描电镜表征了MIP的表面形貌。通过静态吸附实验评价了MIP对鞣花酸的吸附行为。结果显示,MIP对鞣花酸可在40 min内达到吸附平衡,印迹因子为2.68,饱和吸附容量可达70 mg/g;与非印迹聚合物相比,MIP对鞣花酸具有高选择性和特异识别性。对吸附数据进行非线性拟合结果显示,MIP对鞣花酸的吸附动力学较好地符合准二级动力学模型,MIP对鞣花酸的吸附等温线较好地符合Langmuir等温方程。另外,该材料在经过5次循环利用之后,对鞣花酸的吸附容量仍能保持在90%以上,表现了较好的重复利用性能。所合成的MIP能够作为一种良好的选择性吸附鞣花酸的功能材料,有望应用于复杂基质中鞣花酸的分离和纯化。  相似文献   

3.
The molecularly imprinted polymers (MIP) for drug naphazoline (NAZ) have been synthesized by precipitation polymerization. The effect of the dispersive solvents dichloromethane (DCM), acetonitrile (ACN), and Methanol (MeOH) on particle size and morphology of MIP (P1, P2, and P3) was investigated by scanning electron microscopy (SEM). The selectivity of P1, compared with nonimprinted polymer (NIP), C8 and C18 were evaluated via static adsorption using UV spectrophotometer. The result showed that the bond amount of P1 for NAZ was significantly higher than other sorbents. The P1 were applied as a solid‐phase extraction (SPE) stationary phase to extract the NAZ from nasal drops and recoveries of more than 89% (relative standard deviations, RSD <5%) were obtained by high performance liquid chromatograph (HPLC) analyses. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
A new highly selective photocatalyst (RhB‐MIP/TiO2) was successfully prepared by surface molecular imprinting technique using rhodamine B (RhB) as template molecule. The adsorption kinetics show RhB‐MIP/TiO2 possessed fast adsorption rate, and adsorption behavior followed the pseudo‐second‐order kinetics. The static binding experiments revealed RhB‐MIP/TiO2 displayed strong affinity and high adsorption capacity for RhB. Moreover, the equilibrium adsorption rate of RhB‐MIP/TiO2 for RhB can be well fitted by the Langmuir isotherm model. The thermodynamics parameters indicated that the binding system of RhB‐MIP/TiO2 was endothermic and spontaneous. Compared with non‐imprinted photocatalyst (NIP/TiO2), RhB‐MIP/TiO2 exhibited excellent selectivity toward RhB, whose selectivity coefficient for RhB relative to rhodamine 6G (Rh6G) was 2.99. Selective photocatalytic degradation experiments indicated that the apparent rate constant for the photodegradation of RhB over RhB‐MIP/TiO2 is 0.0212 min?1, being 216% of that over NIP/TiO2 (0.0098 min?1). Therefore, RhB‐MIP/TiO2 exhibited higher photocatalytic selectivity toward RhB. The prepared photocatalyst RhB‐MIP/TiO2 has a promising perspective in industrial wastewater treatment. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40890.  相似文献   

5.
A Fe(III) ion‐imprinted silica gel polymer functionalized with phosphonic acid groups (IIP‐PA/SiO2) was prepared with surface imprinting technique by using Fe(III) ion as template ion, grafted silica gel as support, and vinylphosphonic acid as functional monomer. The polymer was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller, and thermogravimetric analysis. The synthesized imprinted silica gel polymer was used as a sorbent for Fe(III) adsorption. The adsorption properties, such as the effect of solution pH, adsorption kinetic, adsorption isotherm, adsorption selectivity as well as the regeneration of sorbent were studied. The results showd that the prepared sorbent (IIP‐PA/SiO2) had a short adsorption equilibrium time (12 min) and high adsorption capacity (29.92 mg g?1) for Fe(III) at the optimal pH of 2.0. The selectivity coefficients of the sorbent for Fe(III) in presence of Cr(III), Mn (II), and Zn(II) were 51.76, 27.86, and 207. 76, respectively. Moreover, the adsorption capacity of the prepared sorbent did not decrease significantly after six repeated use. Thus, the prepared ion‐imprinted silica gel polymer was a promising candidate sorbent for the selective adsorption of Fe(III) from aqueous solutions. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45165.  相似文献   

6.
《分离科学与技术》2012,47(1):74-80
Oleuropein has many antimicrobial, antiviral, and anticancer features found in olive leaf. Therefore, its isolation from olive leaf is very important in such kinds of applications. In this study, a solid-phase extraction system based on the molecularly imprinted polymer (MIP) was proposed for the selective separation of oleuropein from olive leaf. First, oleuropein imprinted polymer has been prepared by the suspension polymerization using methacrylolamidoantiprine–iron (III) metal-chelate monomers. After that, the oleuropein adsorption capacity and selectivity of the prepared imprinted polymer has been determined. The maximum adsorption capacity of oleuropein has found to be 140 mg g?1. Finally, MIP has been used as a sorbent in the solid-phase extraction for the separation of oleuropein from crude extract of olive leaves. The oleuropein analyses have been realized by high performance liquid chromatography. The obtained results indicated that the prepared molecularly imprinted sorbent could be used for at least 10 times for purification of oleuropein from olive leaf. The application of the proposed system in the real sample showed that 24.2 mg pure oleuropein could be obtained from 1.0 g of crude olive leaf extract. As a result, the low cost, simple, and selective adsorbent has been developed for oleuropein adsorption. Supplemental materials are available for this article. Go to the publisher's online edition of Separation Science & Technology to view the supplemental file.  相似文献   

7.
Based on double-imprinting (surfactant and lomefloxacin templates) concept and self-assembly technique, a new molecularly imprinted mesoporous silica (MIP-MS) was prepared to understand and characterize the mechanism of fast binding and selective recognition of lomefloxacin (LOM) by the adsorption isotherms model, the adsorption kinetic models, and the competitive adsorption. The MIP-MS was prepared by using LOM and surfactant micelles as the templates formed through self-hydrolyzed, self-condensed, and co-condensation of tetraethoxysilane and methyltriethoxysilane in alkaline media, and with the covalently anchored organic groups in the mesoporous silica matrix. Both the molecularly imprinted polymer (MIP) and non-imprinted mesoporous polymer (NIP) were prepared for comparison. The surface area, pore size and pore volume of the MIP-MS are 270 m2 g?1, 4.42 nm and 0.28 cm3 g?1, respectively. The kinetics studies showed that the pseudo-second-order model was consistent with the kinetic data of the MIP-MS with the fast binding templates (the 95 % uptake of LOM within 10 min). The equilibrium data, at various temperatures, were described successfully by the Langmuir and Freundlich isotherm models. The Freundlich model was found to fit the experiment data well. The thermodynamics parameters (positive values of ΔS, negative values of ΔH and ΔG) indicated that the binding system for the MIP-MS was entropy-gained, exothermic, and the spontaneous adsorptive forces were stronger on MIP-MS than on NIP and MIP. The MIP-MS showed fast binding, higher affinity, and selectivity for the template of LOM compared with the NIP and MIP.  相似文献   

8.
Ultrathin films of molecularly imprinted polymer (MIP) were prepared by photoiniferter on PVC beads for the selective uptake of lysozyme, taken as a model protein. Acrylamide was selected as the functional monomer and N,N‐methylenebisacrylamide as the crosslinking agent. The copolymerization process was confined to the surface of the PVC beads grafted with diethyldithiocarbamate iniferter initiator in the presence of lysozyme. After extraction of lysozyme from the shell of the PVC‐MIP beads, the latter were then used as artificial receptors for the rebinding of lysozyme. The sequential steps of the modification of PVC beads were monitored by XPS, infrared and Raman spectroscopies. The imprinting step was found to be essential as the PVC‐MIP beads could recognize lysozyme but not the non‐imprinted beads (PVC‐NIP). The binding properties of PVC‐MIP beads were determined using UV spectroscopy from adsorption isotherms of lysozyme, cytochrome, and myoglobin. The imprinted beads were found to be highly selective toward lysozyme over the competitive proteins. This work shows the interest of photoiniferter as an efficient mean for the design of molecularly imprinted polymer beads for rapid, selective removal of proteins. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43694.  相似文献   

9.
Novel molecularly imprinted polymer nanofibers (MIP‐NFs) were prepared for the adsorption of bisphenol A (BPA) in a water sample using the sol–gel process and the electrospinning technique. The effects of a number of synthesis parameters on the adsorption efficiency were investigated. The successful removal of BPA from MIP‐NFs was studied using UV–visible spectroscopy. The prepared MIP‐NFs were characterized by Fourier transform infrared, field emission SEM, TEM and energy dispersive X‐ray analysis. The results showed that the required molar ratio of 3‐aminopropyltriethoxysilane (APTES) to BPA was 15:1, which indicates a good performance in the rebinding test. Likewise, the molar ratio of APTES:acid:water was 1:2:9. The nylon 6 polymer solution, with a concentration of 12 wt%, showed a maximum adsorption capacity for BPA due to a decrease in the nanofiber diameter and an increase in the accessible sites. Furthermore, the maximum adsorption capacity of BPA was achieved at pH 7. Concerning the binding of BPA on MIP‐NFs, the experimental data matched well with the pseudo‐second‐order kinetics data and the Sips isotherm model. The saturated binding capacity for MIP‐NFs was predicted to be 115.1 mg g?1, which was more than twice as high as that for non‐imprinted polymer nanofibers (46.82 mg g?1). The results obtained in this study confirmed that the prepared MIP‐NFs showed considerable binding specificity for BPA in comparison with similar structural compounds such as phenol, naphthol and Naphthol AS, in aqueous solution. The binding capacity of MIP‐NFs remained almost constant after five cycles of reuse. The real sample analysis indicated that MIP‐NFs could be utilized as a useful sorbent material for the extraction of BPA from a water sample.  相似文献   

10.
Molecularly imprinting polymer technology is used to prepare a molecularly imprinted polymer (MIP) for the selective recognition of indole‐3‐carbinol (I3C), a chemopreventive and chemotherapeutic phytochemical associated with the anticancer activities of cruciferous vegetables. Prepolymerization study via nuclear magnetic resonance technique is done to choose the best functional monomer that establishes more interaction with the template. The prepared MIP is tested before in batch experiments and subsequently used as solid‐phase extraction sorbent for the selective detection of I3C from standard solutions. In order to verify the selectivity of the MIP, the binding of structurally related compounds, such as indole‐3‐acetonitrile, teophylline, and tryptophan, on the polymer is investigated. The experiments indicate that the MIP is highly selective for I3C with an association constant of Ka = (1.37 ± 0.07) × 103 M?1. Standard mixture solution loaded on MIP‐SPE cartridge give a recovery of 95% for I3C, while the other compounds are totally eluted during washing step. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40819.  相似文献   

11.
《分离科学与技术》2012,47(15):2342-2351
Molecular imprinted polymer (MIP MAA-β-CD) with 2,4-dichlorophenol (2,4-DCP) and methacrylic acid functionalized β-cyclodextrin (MAA-β-CD) as the template molecule and the functional monomer, respectively, was prepared and used in molecular imprinted-solid phase extraction (MISPE) for the extraction of phenols (2,4-dichlorophenol, 2-chlorophenol, 4-chloro-3-methylphenol, 4-chlorophenol, 2,4,6-trichlorophenol, and 2-nitrophenol) from water samples. The MISPE method was optimized prior to the determination using gas chromatography coupled with a flame ionization detector (GC-FID). Under the optimized conditions, the MIP MAA-β-CD sorbent showed good linearity (0.01-12 mgL?1), low limits of detection (0.14-0.75 µgL?1), and good repeatability (RSD 2.3-3.6%, n = 3). Good recoveries were obtained in the range of 97-115% for tap water and between 88-103% for river water. The developed MIP MAA-β-CD SPE was then compared with other adsorbents. The unique properties of β-CD and presence of imprinted cavities explains the higher extraction recoveries obtained for phenols when using MIP MAA-β-CD SPE.  相似文献   

12.
This work describes methacrylic acid functionalized β-cyclodextrin (MAA-βCD) as a novel functional monomer in the preparation of molecular imprinted polymer (MIP MAA-βCD) for the selective removal of 2,4-dichlorophenol (2,4-DCP). The polymer was characterized using Fourier Transform Infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller (BET) and Field Emission Scanning Electron Microscopy (FESEM) techniques. The influence of parameters such as solution pH, contact time, temperature and initial concentrations towards removal of 2,4-DCP using MIP MAA-βCD have been evaluated. The imprinted material shows fast kinetics and the optimum pH for removal of 2,4-DCP is pH 7. Compared with the corresponding non-imprinted polymer (NIP MAA-βCD), the MIP MAA-βCD exhibited higher adsorption capacity and outstanding selectivity towards 2,4-DCP. Freundlich isotherm best fitted the adsorption equilibrium data of MIP MAA-βCD and the kinetics followed a pseudo-second-order model. The calculated thermodynamic parameters showed that adsorption of 2,4-DCP was spontaneous and exothermic under the examined conditions.  相似文献   

13.
Perfluorooctanoic acid (PFOA) contamination in the environment is a global problem. The aqueous phase is the main medium for PFOA because of its moderate solubility. Adsorption is a feasible way to remove PFOA because of its chemical and biological stability. In this study, a new type of molecularly imprinted polymer (MIP) for the selective adsorption of PFOA in aqueous solutions was synthesized by the precipitation polymerization method with PFOA as the template molecule after optimization. The adsorption kinetics and isotherms of the MIP adsorbent toward PFOA were studied, and the effects of the pH and cations on the adsorption were investigated with batch experiments. The results show that acrylamide (AAM) was the best functional monomer, and the optimal molar ratio of PFOA to AAM to ethylene glycol dimethacrylate (crosslinker) was 1:6:25. The optimized MIP adsorbent had a high affinity for PFOA, and the uptake percentage by the MIP adsorbent was 1.3–2.5 times that of the nonimprinted polymer (NIP) when PFOA existed alone. A maximum PFOA sorption capacity of 5.45 mg/g based on the Langmuir isotherm model was achieved with the MIP adsorbent. The MIP adsorbent exhibited a high selectivity for PFOA over competitive compounds (other perfluorinated alkyl carboxylic and sulfonic acids), whereas the NIP did not. Approximately 90% of the PFOA in the mixture was removed by the MIP adsorbent; this was 18 times that of the NIP. Moreover, the regenerability of the MIP adsorbent was confirmed in five sequential adsorption–desorption cycles without a significant reduction in the PFOA uptake. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43192.  相似文献   

14.
宁振鑫  苏立强 《化工时刊》2011,25(10):12-14
以牛血红蛋白为模板分子,丙烯酰胺为功能单体,N - N甲基双丙烯酰胺为交联剂,通过固定在硅胶表面的引发转移终止剂二乙基二硫代氨基甲酸钠引发聚合反应,应用表面印迹法制备了牛血红蛋白(BHb)印迹聚合物.通过平衡吸附和选择性实验进行评价,结果表明印迹聚合物具有高吸附效率和选择性.  相似文献   

15.
In this work, 2,4-dinitrophenol (2,4-DNP), a new molecularly imprinted polymer (MIP) with excellent performance was synthesized in ethanol by the sol–gel method using 3-aminopropyltriethoxysilane as functional monomer on the surface of silica particles. The structure and morphology of MIP were characterized via scanning electron microscopy, nitrogen adsorption–desorption analysis, infrared spectra, and thermogravimetry analysis. Results demonstrated that MIP had excellent selectivity toward the template molecule (2,4-DNP) with an imprinting factor of 9.55 and a maximum static adsorption capacity of 114.7 mg g−1. Data obtained from the adsorption isotherm of 2,4-DNP were fitted well with the Freundlich isotherm model, and the adsorption process can be described by the pseudo-second-order model. The investigation of adsorption mechanism revealed that the specific recognition process of MIP toward 2,4-DNP was dominated by the hydrogen bond and molecular structure. By employing as a sorbent, the as-prepared MIP was applied to recognize and remove 2,4-DNP in poster paper, nonwoven fabric and brown curtain with recoveries in the range from 85.74 to 100.00%. However, the MIP can effectively remove 2,4-DNP after five cycles.  相似文献   

16.
A temperature-sensitive matrine-imprinted polymer was prepared in chloroform by free-radical cross-linking copolymerization of methacrylic acid at 60 °C in the presence of ethylene glycol dimethacrylate as the cross-linker, N-isopropyl acrylamide as the temperature-responsive monomer and matrine as the template molecule. Binding experiments and Scatchard analyses revealed that two classes of binding sites were formed on molecular imprinted polymer (MIP) at 50 °C. Additionally, the thermoresponsive MIP was tested for its application as a sorbent material for the selective separation of matrine from Chinese medicinal plant radix Sophorae tonkinensis. It was shown that the thermoresponsive MIP displayed different efficiency in clean-up and enrichments using the SPE protocol at different temperatures.  相似文献   

17.
韩宇  苏立强 《化工时刊》2010,24(12):15-17
以Boc-L-苯丙氨酸为模板分子,应用沉淀聚合法制备了对Boc-L-苯丙氨酸具有特异性吸附的分子印迹聚合物。通过平衡吸附和高效液相色谱的方法对印迹聚合物进行评价,结果表明印迹聚合物具有高吸附效率和选择性,实现了消旋混和物的快速基线分离。  相似文献   

18.
In our study, a Zn(II) ion-imprinted polymer (ZnIP) and non-imprinted polymer (NIP) were synthesized via free-radical polymerization. 1-Vinylimidazole, ethylene glycol dimethacrylate, 2-hydroxyethylmethacrylate and 2,2′-azobisisobutyronitrile were used as functional, cross-linking monomers and free-radical initiator, respectively. The obtained polymer was characterized by various analytical methods (Fourier Transform Infrared Spectroscopy, Transmission Electron Microscopy, Wavelength Dispersive X-ray Fluorescence, UV VIS, thermal analysis). The sorption properties of ZnIP and NIP were evaluated after removal of Zn(II) ions from the polymer network. The optimum pH for adsorption was 7.0. The maximum adsorption capacity at the pH was 5.2 and 0.22 mg/g for ZnIP and NIP, respectively. To determine the selectivity, the polymer was equilibrated with the binary mixture of Zn(II) ions and the interfering ions [Cu(II), Ni(II) or Co(II)]. The relative selectivity of ZnIP was 22.57, 5.44 and 46.17 for Cu(II), Ni(II) and Co(II) ions, respectively. The proposed ZnIP sorbent was applied to determine the zinc ions in urine samples by Wavelength Dispersive X-ray Fluorescence.  相似文献   

19.
张欣佳  苏立强 《化工时刊》2013,27(4):9-11,40
以白杨素为模板分子,硅胶为载体,丙烯酰胺为功能单体,采用表面印迹法制备白杨素分子印迹聚合物。并通过红外光谱测定,吸附实验等对印迹聚合物进行表征及性能评价。静态吸附实验表明,印迹聚合物对模板分子的吸附量远远高于非印迹聚合物;印迹聚合物及非印迹聚合物对白杨素、氯霉素、甲砜霉素的选择吸附表明,所制备的分子印迹聚合物对白杨素有特异性吸附效果。  相似文献   

20.
The multiple bulk copolymerization method, which was developed in our previous works, was further investigated with prometryn, tetracycline, and propranolol as templates for the preparation of molecularly imprinted polymer (MIP) coatings on silicon fibers for solid‐phase microextraction. The preparation conditions (e.g., the solvent, monomer, crosslinker, component proportions, polymerization time, and number of coating procedures) were investigated systemically in an effort to enhance the coating thickness, surface morphology, and reproducibility. The methodology was examined, and some common specialties were explored in the preparation of three MIP‐coated fibers. Even after the coating procedure was repeated 10 times, the prometryn, tetracycline, and propranolol MIP‐coated fibers were prepared reproducibly with coating‐thickness relative standard deviations of 2.6, 3.0, and 5.1%, respectively; they were highly homogeneous, and a compact morphological structure was obtained. The extraction capacities of prometryn, tetracycline, and propranolol with corresponding MIP‐coated fibers were approximately 10.4, 3.9, and 3.3 times as much as those with the nonimprinted polymer (NIP)‐coated fibers, respectively, and the selectivity factors of prometryn, tetracycline, and propranolol MIP coatings for the template molecules and structural analogues were 2.2–10.4, 2.2–3.9, and 1.3–3.3, respectively, in comparison with the corresponding NIP coatings. In comparison with commercial polydimethylsiloxane/divinylbenzene coatings that were approximately 3 times thicker, the extracted amounts of prometryn, tetracycline, and propranolol were 4.2, 12.3, and 7.7 times higher with prometryn, tetracycline, and propranolol MIP coatings, respectively. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号