首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The jet stretch of dry‐jet wet spun PAN fiber and its effects on the cross‐section shape of fibers were investigated for a PAN‐DMSO‐H2O system. Clearly, the spinning parameters, such as dope temperature, bath concentration, bath temperature, and air gap, all influenced the jet stretch. Also, under uniform conditions, the postdrawing ratio as well as that of jet stretch changed. Under given conditions, as the bath temperature was below 30°C or above 45°C, jet stretch had little effect on the cross‐sectional shapes of PAN fiber. Within the temperature of 30–45°C, fiber's cross‐section shapes change obviously from round over an approximate circular shape into to an elliptical or a flat shape. The scope of jet stretch produced PAN fiber with circular cross‐section was bigger than that in wet spinning. These results indicated that appropriate air gap height, under milder formation conditions in dry‐jet wet spinning, could result in higher jet stretch and higher postdrawing ratio. The appropriate jet stretch and postdrawing ratio could result in circular profile of PAN fiber, which were helpful to produce round PAN precursor with finer size and better properties for carbon fiber. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
The jet stretch of wet‐spun PAN fiber and its effects on the cross‐section shape and properties of fibers were investigated for the PAN‐DMSO‐H2O system. Evidently, the spinning parameters, such as dope temperature, bath concentration, and bath temperature, influenced the jet stretch. Also, under uniform conditions, the postdrawing ratio changed as well as that of jet stretch. When coagulation temperature was 35°C simultaneously with bath concentration of 70%, jet stretch impacted obviously the cross‐section shapes of PAN fiber, but had little effect when the temperature was below 10°C or above 70°C. As the jet stretch ratio increased, the crystallinity, crystal size, sonic orientation, and mechanical properties of the as‐spun fiber changed rapidly to a major value for jet stretch ratio of 0.9 where the cross section of as‐spun fiber was circular. With further increasing of jet stretch ratio, the properties changed slightly but the fiber shape was not circular. The results indicated that appropriate jet stretch, under milder formation conditions in wet‐spinning, could result in the higher postdrawing ratio and circular profile of PAN fiber, which were helpful to produce round PAN precursor with minor titer and perfect properties for carbon fiber. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

3.
A new spinning index for a PAN precursor fiber is proposed that includes the viscosity of a spinning dope, the thermodynamic affinity, and the draw ratio during the spinning process. Through dry‐jet wet spinning, six types of PAN precursor fibers with different spinning parameters, including solid content, solvent content in a bath, and draw ratio, were fabricated and analyzed with tensile tests, SEM, and XRD. The results show that the spinning index can reflect the mechanical properties of the fibers but is less indicative of crystallinity. Hence, the current spinning index is recommended for use as an indicator for the mechanical properties of PAN precursor fibers. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41265.  相似文献   

4.
干-喷湿纺聚丙烯腈纤维拉伸工艺研究   总被引:1,自引:0,他引:1  
研究了干 -喷湿纺聚丙烯腈 (PAN)初生纤维的喷丝头拉伸比和三级拉伸 (空气拉伸、DMF浴拉伸、热水和沸水拉伸、干热拉伸 )工艺中各拉伸比对纤维性能的影响。结果表明 :提高喷丝头拉伸比可明显地降低初生纤维的线密度 ,提高强度 ;三级拉伸工艺中各拉伸比的提高均有利于PAN纤维线密度的减小及其强度、声速取向度和抗张模量的提高 ;合理调配三级拉伸中各拉伸比可制得强度超过 7.0cN/dtex的PAN纤维  相似文献   

5.
Sugarcane bagasse, a cheap cellulosic waste material, was investigated as a raw material for producing lyocell fibers at a reduced cost. In this study, bagasse was dissolved in N‐methylmorpholine‐N‐oxide (NMMO) 0.9 hydrate, and fibers were prepared by the dry jet‐wet spinning method with coagulation in an aqueous NMMO solution. The effects of NMMO in 0 to 50% concentrations on the physical properties of fibers were investigated. The coagulating bath contained water/NMMO (10%) solution produced fiber with the highest drawability and highest physical properties. The cross‐section morphology of these fibers reveals fibrillation due to the high degree of crystallinity and high molecular orientation. In the higher NMMO concentrated baths (30 to 50%), the prepared fibers were hollow inside, which could be useful to make highly absorbent materials. The lyocell fibers prepared from bagasse have a tensile strength of 510 MPa, initial modulus of 30 GPa, and dynamic modulus of approximately 41 GPa. These properties are very comparable with those of commercial lyocell fibers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Polyacrylonitrile (PAN)/acrylamide (AM) fibers were fabricated via dry‐jet wet spinning process using a solvent‐free coagulation bath. The effects of AM loading as comonomer on the mechanical and thermal properties of PAN‐based carbon fiber have been studied. The thermal stability and mechanical stability of the fibers were characterized using differential scanning calorimetry (DSC) and tensile testing. Fibers fabricated from PAN with 5 wt% AM had the highest Young Modulus at 5.54 GPa. It also showed better exothermic trend process with broader exothermic peak and lower initiation stabilization temperature compared with homopolymer PAN. The elemental composition and chemical structure evolution of the fibers during the heat treatment processes were evaluated by elemental analyzer and Fourier Transform Infrared Spectroscopy. Crystal structure evolution of the fibers during the heat treatment process was elucidated by X‐ray diffraction (XRD) analysis. The elemental analyzer, XRD and FTIR results revealed that pyrolysis process used had successfully transformed PAN/AM fibers produced from solvent free coagulation bath into carbon fibers that were comparable with the conventional coagulation bath. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

7.
High‐performance regenerated cellulose fibers were prepared from cellulose/1‐butyl‐3‐methylimidazolium chloride (BMIMCl) solutions via dry‐jet wet spinning. The spinnability of the solution was initially evaluated using the maximum winding speed of the solution spinning line under various ambient temperatures and relative humidities in the air gap. The subsequent spinning trials were conducted under various air gap conditions in a water coagulation bath. It was found that low temperature and low relative humidity in the air gap were important to obtain fibers with high tensile strength at a high draw ratio. From a 10 wt % cellulose/BMIMCl solution, regenerated fibers with tensile strength up to 886 MPa were prepared below 22 °C and relative humidity of 50%. High strengthening was also strongly linked with the fixation effect on fibers during washing and drying processes. Furthermore, an effective attempt to prepare higher performance fibers was conducted from a higher polymer concentration solution using a high molecular weight dissolving pulp. Eventually, fibers with a tensile strength of ~1 GPa and Young's modulus over 35 GPa were prepared. These tensile properties were ranked at the highest level for regenerated cellulose fibers prepared by an ionic liquid–based process. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45551.  相似文献   

8.
Poly (ε‐caprolactone) fibers were prepared by dry‐spinning method. The effect of processing parameters on linear density, mechanical, and morphological properties of fibers was investigated using the response surface methodology (RSM). This method allowed evaluating a quantitative relationship between polymer concentrations, spinning speed, and draw ratio on the properties of the fibers. Polynomial regression model was fitted to the experimental data to generate predicted response. The results were subjected to analysis of variance to determine significant parameters. It was found that all three parameters had significant effect on linear density of fibers. Combined effect of concentration and spinning speed was observed in which the linear density of fiber was more sensitive to changes in the solution concentration at lower spinning speed. Polymer concentration had the largest influence on the mechanical properties of fibers. An average cross‐sectional radius of fibers was affected by concentration and draw ratio in opposite manner. Among all three parameters, only polymer concentration had significant effect on circularity of fiber cross sections. By applying the RSM, it was possible to obtain a mathematical model that can be used to better define processing parameters to fabricate dry‐spun PCL fiber in a more rational manner. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42113.  相似文献   

9.
As one member of high performance fibers, aromatic polyimide fibers possess many advantages, such as high strength, high modulus, high and low temperature resistance, and radiation resistance. However, the preparation of the high performance fibers is so difficult that the commercial fibers have not been produced except P84 with good flame retardancy. In this report, a polyimide was synthesized from 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA) and 4,4′‐oxydianiline (ODA) and the fibers were prepared from its solution by a dry‐jet wet‐spinning process. The formation of the as‐spun fibers in different coagulation bath composition was discussed. Scanning electron microscope (SEM) was employed to study the morphology of the as‐spun fibers. As a result, the remnant solvent existed in the as‐spun fibers generated from coagulation bath of alcohol and water. There were many fibrils and microvoids with the dimension of tens of nanometers in the fibers. One could observe the obvious fibrillation and the drawn fibers. The measurement for the mechanical properties of the fibers with a drawing ratio of 5.5 indicated that tensile strength and initial modulus were 2.4 and 114 GPa, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 669–675, 2004  相似文献   

10.
Polyaniline fibers were prepared with a continuous forming‐drawn processing routine that better met practical production requirements. The continuous forming drawing of the fibers was conducted successfully with the following methods. A reducing agent was added to a polymer solution during the dissolution of a polyaniline emeraldine base in N‐methyl‐2‐pyrrolidinone (NMP). After the entire wet‐spinning process was finished, the fibers were reoxidized and doped to obtain electric conductivity. The as‐spun fibers were predrawn at a low drawing ratio in a warm water bath before a plasticization drawing process on a hot plate. After the fibers were predrawn, some solvent was still kept in the fibers and used as a plasticizer of the fibers so that the plasticization drawing process would be performed successfully. The spinning conditions that affected the mechanical properties and conductivity of the fibers were the content of NMP in the coagulation bath, the coagulation‐bath temperature, the warm‐water‐bath temperature, the predrawing ratio, the hot‐plate temperature, the plasticization drawing ratio, and the reoxidation and protonation treatment time. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 956–960, 2004  相似文献   

11.
Alginate/ N‐Succinyl‐chitosan (SCS) blend fibers, prepared by spinning their mixture solution through a viscose‐type spinneret into a coagulating bath containing aqueous CaCl2, were studied for structure and properties with the aid of infrared spectroscopy (IR) and X‐ray diffraction (XRD). The results indicated a good miscibility between alginate and SCS, because of the strong interaction from the intermolecular hydrogen bonds. The best values of the dry tensile strength and breaking elongation were obtained when SCS content was 30 wt %. The wet tensile strength decreased with the increase of SCS content, and the wet breaking elongation achieved maximum value when the SCS content was 30 wt %. Introduction of SCS in the blend fiber improved water‐retention properties of blend fiber compared to pure alginate fiber. Antibacterial fibers, obtained by treating the fibers with aqueous solution of silver nitrate, exhibited good antibacterial activity to Staphylococcus aureus. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
The spinnability of a spinning solution using DMSO as the solvent was investigated for dry‐jet wet spinning of PAN precursor fiber. Among many variables responsible for spinnability, the coagulating conditions, the air gap length, the nonsolvent content in spinning solution, and the spinning temperature have been viewed as the key factors, and they were investigated in this study. It was found however, unlike in the wet spinning, the spinnability in dry‐jet wet spinning process was barely influenced by the coagulating conditions, likely attributable to the existence of the air gap. However, the spinnability worsened when the air gap was longer than 30 mm. The quality of the spinning solution deteriorated with the increasing water content in it. The spinnability improved when the spinning temperature was maintained between 60 and 72°C and turned down once the temperature was over 72°C. The experimental results indicated that all the factors should be comprehensively considered to ensure good spinnability in dry‐jet wet spinning process. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
As one type of high‐performance fibers, the polyimide fibers can be prepared from the precursor polyamic acid via dry‐spinning technology. Unlike the dry‐spinning process of cellulose acetate fiber or polyurethane fiber, thermal cyclization reaction of the precursor in spinline with high temperature results in the relative complex in the dry‐spinning process. However, the spinning process is considered as a steady state due to a slight degree of the imidization reaction from polyamic acid to polyimide, and therefore a one‐dimensional model based on White‐Metzer viscoelastic constitutive equation is adopted to simulate the formation of the fibers. The changes of solvent mass fraction, temperature, axial velocity, tensile stress, imidization degree, and glass transition temperature of the filament along the spinline were predicted. The effects of spinning parameters on glass transition temperature and imidization degree were thus discussed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Poly(lactic acid) fiber was prepared by dry‐jet‐wet spinning of the polymer from chloroform solution and with methanol as the precipitating medium. The as‐spun fiber was subsequently made into high strength fiber by two‐step process of drawing at a temperature of 90°C and subsequent heat setting in the temperature range of 120°C. The draw ratio had significant influence on the crystallinity and the tensile strength of the fiber. The fiber with the tenacity of 0.6 GPa and modulus of 8.2 GPa was achieved at a draw ratio of 8. The differential scanning calorimetry revealed an increase in the glass‐transition temperature with the increase in the draw ratio, which suggests the orientation of chains during the drawing process. The surface morphology of the filament as revealed by scanning electron microscopy shows that fibers are porous in nature, but a significant reduction in the porosity and pore size of the fiber was observed with the increase in the draw ratio. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1239–1246, 2006  相似文献   

15.
Ethylene oxide was used to etherify alkali cellulose with a low substitution degree to replace carbon disulfide to generate cellulose xanthogenate by viscose technology. The resultant low‐substituted hydroxyethylcellulose (LSHEC), with molar substitution of 0.49, was used to attempt to spin LSHEC fibers under spinning and coagulation conditions identical to those used for industrial rayon fibers. The spinnability of LSHEC was investigated by the variation of the storage modulus, loss modulus, and complex viscosity with the concentration of the LSHEC spinning solutions and temperature. It was found that the dissolution of LSHEC in sodium hydroxide aqueous solutions was an exothermic process, whereas the gelation of LSHEC was an endothermic process. Spinning conditions, comprising the concentration of the spinning solutions and corresponding spinning temperatures, were derived from the gelation onset curve theoretically. Moreover, combinations of the concentration of the spinning solution and the temperature of the coagulation bath could be predicted by the gelation onset curve. Finally, LSHEC fibers were prepared under the spinning conditions based on the gelation onset curve. The as‐spun LSHEC fibers had dry and wet tensile strengths of 1.59 and 0.47 cN/dtex, respectively, with a 0.30 ratio of the wet tensile strength to the dry tensile strength. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Polyacrylonitrile (PAN) and PAN/carbon nanotube (PAN/CNT) fibers were manufactured through dry‐jet wet spinning and gel spinning. Fiber coagulation occurred in a solvent‐free or solvent/nonsolvent coagulation bath mixture with temperatures ranging from ?50 to 25°C. The effect of fiber processing conditions was studied to understand their effect on the as‐spun fiber cross‐sectional shape, as well as the as‐spun fiber morphology. Increased coagulation bath temperature and a higher concentration of solvent in the coagulation bath medium resulted in more circular fibers and smoother fiber surface. as‐spun fibers were then drawn to investigate the relationship between as‐spun fiber processing conditions and the drawn precursor fiber structure and mechanical properties. PAN precursor fiber tows were then stabilized and carbonized in a continuous process for the manufacture of PAN based carbon fibers. Carbon fibers with tensile strengths as high as 5.8 GPa and tensile modulus as high as 375 GPa were produced. The highest strength PAN based carbon fibers were manufactured from as‐spun fibers with an irregular cross‐sectional shape produced using a ?50°C methanol coagulation bath, and exhibited a 61% increase in carbon fiber tensile strength as compared to the carbon fibers manufactured with a circular cross‐section. POLYM. ENG. SCI., 55:2603–2614, 2015. © 2015 Society of Plastics Engineers  相似文献   

17.
The dry–jet–wet spinning process was employed to spin poly(lactic acid)(PLA) fiber by the phase inversion technique using chloroform and methanol as solvent and nonsolvent, respectively, for PLA. The as spun fiber was subjected to two‐stage hot drawing to study the effect of various process parameters, such as take‐up speed, drawing temperature, and heat‐setting temperature on the fiber structural properties. The take‐up speed had a pronounced influence on the maximum draw ratio of the fiber. The optimum drawing temperature was observed to be 90°C to get a fiber with the tenacity of 0.6 GPa for the draw ratio of 8. The heat‐setting temperature had a pronounced effect on fiber properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3774–3780, 2006  相似文献   

18.
The influence of dry‐jet wet spinning parameters on the production of man‐made cellulosic fibers from 13 wt % cellulose/1,5‐diazabicyclo[4.3.0]non‐5‐ene acetate solutions was investigated. The spinneret nozzle diameter, extrusion velocity, draw ratio, and coagulation bath temperature were the studied parameters. The production of highly oriented fibers was favored by selecting higher extrusion velocity and lower spinneret diameter. A spinneret size of 100 µm and a draw ratio of 6 were sufficient to highly orient the cellulose macromolecules and achieve tenacities above 40 cN/tex (600 MPa). Total orientation assessed via birefringence measurement, tenacity, and Young's modulus values reached a plateau at a draw of 6 and no further development in properties was observed. A temperature of the aqueous coagulation bath of 15 °C slightly promoted greater orientation of the fibers by hampering structural changes of the cellulose macromolecules in the nascent solid fibers. Furthermore, the determination of the elongational viscosity of the liquid thread via the measurement of radial force tensor was tested and showed promising results. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43718.  相似文献   

19.
In this article, the effect of jet stretch ratio on the extrudate die‐swell effect of polyacrylonitrile spinning solution and the structure and properties of as‐spun fibers was systematically analyzed by means of X‐ray diffraction (XRD), electron microprobe analysis, and the measurement of die‐swell ratio, boiling‐water shrinkage, porosity, mechanical properties analysis, etc. It revealed the formation mechanism of the die‐swell effect and spin orientation and its influences on the structure and properties of as‐spun fibers. It showed that with the increase of the jet stretch ratio the die‐swell ratio became smaller, both the degree of spin orientation and the crystallinity increased, the microstructure of as‐spun fibers became compact and homogeneous, and the cross section tended to be circular. As a result, the breaking tenacity of as‐spun fibers and resultant precursors all increased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3348–3352, 2007  相似文献   

20.
A new gel‐spinning method was employed to prepare polyacrylonitrile (PAN) fibers from a PAN spinning solution with dimethylsulfoxide and water as a mixed solvent. Aging at 25 °C for 120 min brought the spinning solution to the sol–gel transition and a three‐dimensional gel formed before entering the coagulation bath. The as‐spun fibers from the solution at the sol–gel transition and in the gel state possess a circular cross‐section. Compared with dry‐jet wet‐spun fibers, the gel‐spun fibers have a more compact structure, fewer voids and better mechanical properties after a three‐stage drawing. Moreover, the gel‐spun fibers obtained from the extraction bath have a more homogeneous microstructure and better packed supermolecular structure. The physical properties of the extracted gel‐spun fibers are also better than those of coagulated gel‐spun fibers. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号