首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work experimentally and theoretically determines the molecular macrostructure of the polymer mixture that is developed (at relatively low conversions) in a solution polymerization of styrene (St) in presence of polybutadiene (PB). The reaction was carried out at 70°C in a batch‐stirred tank reactor. From samples taken along the reaction, the three polymeric components of high‐impact polystyrene (HIPS) (i.e., polystyrene  PS , residual PB, and graft copolymer) were first separated from each other by solvent extraction. Then, the graft copolymer was ozonized to isolate the St branches. The molecular weight distributions (MWDs) of the total HIPS, the three HIPS components, and the grafted St branches were determined by the size exclusion chromatography (SEC). For the graft copolymer and the total HIPS, the variation of the St mass fraction with molecular weights was also determined by SEC. All measurements were compared with theoretical estimates, and a reasonable agreement is observed. For the theoretical estimates, the mathematical model of Estenoz, D. A.; Valdez, E.; Oliva, H. M.; Meira, G. R. (J Polym Sci 1996, 59, 861) was extended to compare the MWD of the St branches with the MWD of the free PS. For the sought experimental conditions, these two distributions had very similar results but in a bulk industrial process, larger discrepancies are to be expected. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1950–1961, 1999  相似文献   

2.
Thermal characterization of maleic anhydride‐styrene‐allyl propionate (MA‐St‐AP) terpolymer and its ester derivatives named as n‐alkyl maleate and shown as nPr MA‐St‐AP, nBu MA‐St‐AP, nPn MA‐St‐AP, and nBz MA‐St‐AP was carried out. The thermal characterization was performed using thermal analysis techniques such as TGA, DTA, DSC, and TMA. Different results were observed between the original terpolymer and its ester derivatives. Thermal stabilities of the terpolymer and its ester derivatives were compared by using various measurements plotted as TGA, DTA, DSC, and TMA curves. The increase in the alcohols' carbon numbers added to the original terpolymer results in ester derivatives with different thermal stability behavior. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 600–604, 2007  相似文献   

3.
Multistage emulsion polymerization was used to prepare ultra‐high molecular weight foam regulator of low cost, with methyl methacrylate (MMA), butyl acrylate (BA), styrene (St) as main raw materials. Ubbelohde viscometer, dynamic light scattering, infrared and raman spectra, TEM, DSC, TGA, and GPC were all used to characterize constituent and structure, morphology, and molecular weight. As a result, when the ratio of soft monomer (BA) and hard monomer (St + MMA) is 1:3, MMA:St = 4:1, potassium persulfate (KPS): 0.15%, sodium hydrogen sulfite (SHS): 0.05%, azodiisobutyronitrile (AIBN): 0.15%, divinyl benzene (DVB): 0.3%, the final product terpolymer has obvious core‐shell structure and ultra‐high molecular weight (Mw = 1,400,000). This kind of foam regulator showed improvements in the melt strength, prevention of bubble coalescence and reduction on cost when compared with the traditional. Finally, the coefficients of poly (methyl methacrylate‐butyl acrylate‐styrene) terpolymer's Mark‐Houwink equation were calculated with tetrahydrofuran (THF) solvent at 25 °C. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44479.  相似文献   

4.
Three novel iniferter reagents were synthesized and used as initiators for the polymerizations of methyl methacrylate (MMA) and styrene (St) in the presence of copper(I) bromide and N,N,N′,N″,N″‐pentamethyldiethylenetriamine at 90 and 115°C, respectively. All the polymerizations were well controlled, with a linear increase in the number‐average molecular weights during increased monomer conversions and relatively narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight ≤ 1.36) throughout the polymerization processes. The polymerization rate of MMA was faster in bulk than that in solution and was influenced by the different polarities of the solvents. A slight change in the chemical structures of the initiators had no obvious effect on the polymerization rates of MMA and St. The initiator efficiency toward MMA was lower than that toward St. The results of 1H‐NMR, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrum analysis, and chain‐extension experiments demonstrated that well‐defined poly(methyl methacrylate) and polystyrene bearing photolabile groups could be obtained via atom transfer radical polymerization (ATRP) with three iniferter reagents as initiators. The polymerization mechanism for this novel initiation system was a common ATRP process. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

5.
2‐Mercapto thioxanthone (TX‐SH) was used as a chain transfer agent in free‐radical polymerization of methyl methacrylate (MMA) and styrene (St), by using 2,2′‐azobisisobutyronitrile (AIBN) as an initiator at 70°C. Chain transfer constants were found to be 1.41 and 0.12 for St and MMA, respectively. The use of TX‐SH as a chain transfer agent leads to the formation of polymers with thioxanthone (TX) end groups. The incorporation TX moiety was confirmed by spectral measurements. Polymers obtained this way were used as triplet photosensitizer in free‐radical polymerization of MMA in the presence of a hydrogen donor such as N‐methyldiethanolamine (MDEA). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3766–3770, 2007  相似文献   

6.
Low conversion kinetics of terpolymerization of N,N‐dimethylaminoethyl methacrylate (DMAEM) and dodecyl methacrylate (DDMA) with methyl methacrylate (MMA) or styrene (ST) was investigated. Reactions were performed at 70°C, in toluene solutions, using peroxide initiator. The interdependence between terpolymer and monomer feed composition was successfully described by Alfrey‐Goldfinger equation and the unitary, binary, and ternary azeotropes were calculated. In MMA‐containing system, the wide pseudoazeotropic region with existence of true azeotropic point was observed and experimentally confirmed at the DMAEM:MMA:DDMA molar ratio of 56:41:3. In the ST‐containing system compositional heterogeneity was significant, more than 10 mol%. Required copolymerization reactivity ratios were determined by linear and nonlinear methods. The glass transition temperatures of synthesized terpolymers are found to be between those of the corresponding homopolymers and relative to their content. Increase in the MMA or ST contents and decrease in the DDMA content in terpolymers results in an increase in their glass transition temperatures. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

7.
Bis(4-methacryloylmethylphenyl)-sulphone (BMMPhSu) was employed as one of three monomers used for obtaining the terpolymer MMA-St-BMMPhSu. The influence of curing systems: benzoyl peroxide (BP) and NN-dimethylaniline (DMA), [system I] and luperox (L), NN-dimethylaniline and cobalt naphthenate (Co), [system II], on gelation time of 20% solution of BMMPhSu in the mixed solvent methyl methacrylate (MMA) and styrene (St) used in 1:1 ratio was studied. Concentration of ingredients of curing systems was variable. The influence of concentration of BMMPhSu in the compositions, and concentration of MMA and St in the solvent, was also investigated. Compositions consisting of curing system and BMMPhSu solution in the mixed solvent MMA-St were polymerized by the use of the same curing system BP(4%) + DMA(6%). In this way six terpolymer films were obtained. The curing system L(6%) + DMA(8%) + Co(2%) was also used for polymerization of the above mentioned solutions, except the solvent containing 10% MMA, and additional 5 films of terpolymer were obtained. Films were heated at 80°C for 4 hrs and then next cut into strips. The strips were tested for mechanical properties like tensile strength, elongation at break, Young's modulus, Brinnell's and Shore's hardness. Their thermal properties and glass transition temperatures were also determined.  相似文献   

8.
In this study, polymethacrylate polymers were synthesized by free‐radical polymerization for use as pour point depressants in lubricant oil, and their low‐temperature properties were investigated. Four methacrylate monomers were synthesized by the esterification of methyl methacrylate (MMA) with four kinds of fatty alcohols. The purification step was performed to prepare the pure monomers. Two polymerization experiments were carried out with four kinds of methacrylate monomers obtained previously and MMA. Copolymers, which were made from one kind of monomer and MMA, and terpolymers, which were made from two kinds of monomers and MMA, were prepared. The molecular structures of the synthesized methacrylate monomers and polymethacrylate polymers were verified by 1H‐NMR, and the molecular weight data were obtained by gel permeation chromatography. The pour points of the base oils containing 0.1 wt % polymethacrylate polymers were measured according to ASTM D 97‐93. The pour points of most base oils containing each polymer decreased compared to that of the pure base oil. Particularly, poly(dodecyl methacrylate‐co‐hexadecyl methacrylate‐co‐methyl methacrylate), made of dodecyl methacrylate, hexadecyl methacrylate, and MMA at a molar ratio of 3.5 : 3.5 : 3, showed the best low‐temperature properties. This terpolymer dropped the pour point of the base oil by as much as 23°C, and its yield was 93.5%. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
In our previous publication the detailed molecular macrostructure generated in a solution polymerization of styrene (St) in the presence of polybutadiene (PB) at 60°C, was theoretically calculated. In this work, an extended kinetic mechanism that incorporates monomer thermal initiation, chain transfer to the rubber, chain transfer to the monomer, and the gel effect is proposed, with the aim of simulating a bulk high-impact polystyrene (HIPS) process. The mathematical model enables the calculation of the bivariate weight chainlength distributions (WCLDs) for the total copolymer and for each of the generated copolymer topologies and the univariate WCLDs for the free polystyrene (PS), the residual PB, and the crosslinked PB topologies. These last topologies are characterized by the number of initial PB chains per molecule; copolymer topologies are characterized by the number of PS and PB chains per molecule. The model was validated with published literature data and with new pilot plant experiments that emulate an industrial HIPS process. The literature data correspond to a dilute solution polymerization at a constant low temperature with chemical initiation and a bulk polymerization at a constant high temperature with thermal initiation. The new experiments consider different combinations of prepolymerization temperature, initiator concentration, and solvent concentration. One of the main conclusions is that most of the initial PB is transformed into copolymer. For example, for a prepolymerization temperature of 120°C with addition of initiator, the experimental measurements indicate that the final total rubber mass is approximately three times higher than the initial PB. Also, according to the model predictions, the final weight fractions are: free PS, 0.778; graft copolymer, 0.220; initial PB, 0.0015; and purely crosslinked PB, 0.0005. The final graft copolymer exhibits the following characteristics: average molecular weights, M n,C = 492,000 and M w,C = 976,000; average weight fraction of St, 0.722; and average number of PS and PB branches per molecule, 5.19 and 1.13, respectively. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
In this article, a facile strategy was developed to prepare BA‐MMA‐GMA/MWNTs (multiwalled carbon nanotubes) hybrid nanoparticles as nanofillers in rubber by single‐step grafting technique. First, a new macromolecular surface modifier butyl acrylate (BA)‐α‐methyl methacrylate(MMA)‐glycidyl methacrylate (GMA) terpolymer was synthesized via radical copolymerization. Afterward, this terpolymer modifier was covalently grafted onto the surface of crude MWNTs by single‐step grafting technique. The structure, surface properties, and thermal stability of modified MWNTs were systematically investigated by FTIR, TGA, and TEM. FTIR results showed that BA‐MMA‐GMA terpolymer was successfully grafted onto the surface of MWNTs. TGA indicated that the optimum mass fraction of macromolecular modifier coated on the surface of MWNTs was 9 wt %. TEM images revealed that an organic coating layer was formed and the modified MWNTs showed good dispersibility in acetone. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
A terpolymer, obtained by the free‐radical terpolymerization of 2‐(N,N‐dimethylamino)ethyl methacrylate (DMMA), methyl methacrylate(MMA), and isobutyl methacrylate (IBMA), was allowed to react with hydrogen peroxide, chloroacetic acid, and diethyl sulfate to form the corresponding modified terpolymers: (1) N,N‐dimethyl‐N‐(2‐methacryloyloxyethyl)amine N‐oxide, MMA and IBMA (DMANO series); (2) N‐(carboxymethyl)‐N,N‐dimethyl‐ N‐(2‐methacryloyloxyethyl)ethyl ammonium, MMA and IBMA (CDME series); and (3) N‐(ethyl)‐N,N‐dimethyl‐N‐(2‐methacryloyloxyethyl)ethyl ammonium ethylsulfonate, MMA and IBMA (EDMEES series), respectively. The terpolymer compositions were determined using 13C NMR spectrometry. Surface free energies of the terpolymers were estimated by measuring the contact angles of water and methylene iodide on the three series films (DMANO, CDME, and EDMEES), and the effect of the N‐oxide group on wettability was discussed. It was found that the upper surface of the films for the DMANO and CDME series are more hydrophobic than that for the EDMEES series. Notably, elongation to break for the DMANO series was relatively larger than that for the CDME series because of the water bound to the N‐oxide functional group. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1235–1243, 2005  相似文献   

12.
To improve the mechanical properties of poly(vinyl chloride) (PVC), the possibility of combining PVC with elastomers was considered. Modification of natural rubber (NR) by graft copolymerization with methyl methacrylate (MMA) and styrene (St) was carried out by emulsion polymerization by using redox initiator to provide an impact modifier for PVC. The impact resistance, dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM) of St and MMA grafted NR [NR‐g‐(St‐co‐MMA)]/PVC (graft copolymer product contents of 5, 10, and 15%) blends were investigated as a function of the amount of graft copolymer product. It was found that the impact strength of blends was increased with an increase of the graft copolymer product content. DMA studies showed that NR‐g‐(St‐co‐MMA) has partial compatibility with PVC. SEM confirmed a shift from brittle failure to ductility with an increase graft copolymer content in the blends. The mechanical properties showed that NR‐g‐(St‐co‐MMA) interacts well with PVC and can also be used as an impact modifier for PVC. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1666–1672, 2004  相似文献   

13.
Heterogeneous latexes were prepared by a semicontinuous seeded emulsion polymerization process under monomer starved conditions at 80 °C using potassium persulfate as the initiator and sodium dodecyl sulfate as the emulsifier. Poly(butyl acrylate) latexes were used as seeds. The second‐stage polymer was poly(styrene‐co‐methyl methacrylate). By varying the amounts of methyl methacrylate (MMA) in the second‐stage copolymer, the polarity of the copolymer phase could be controlled. Phase separation towards the thermodynamic equilibrium morphology was accelerated either by ageing the composite latex at 80 °C or by adding a chain‐transfer agent during polymerization. The morphologies of the latex particles were examined by transmission electron microscopy (TEM). The morphology distributions of latex particles were described by a statistical method. It was found that the latex particles displayed different equilibrium morphologies depending on the composition of the second‐stage copolymers. This series of equilibrium morphologies of [poly(butyl acrylate)/poly(styrene‐co‐methyl methacrylate)] (PBA/P(St‐co‐MMA)) system provides experimental verification for quantitative simulation. Under limiting conditions, the equilibrium morphologies of PBA/P(St‐co‐MMA) were predicted according to the minimum surface free energy change principle. The particle morphology observed by TEM was in good agreement with the predictions of the thermodynamic model. Therefore, the morphology theory for homopolymer/homopolymer composite systems was extended to homopolymer/copolymer systems. © 2002 Society of Chemical Industry  相似文献   

14.
The decomposition rate constant (kd) of diethyl ketone triperoxide (DEKTP, 3,3,6,6,9,9‐hexaethyl‐1,2,4,5,7,8‐hexaoxacyclononane) in methyl methacrylate (MMA) was determined by the kinetic study of its thermal decomposition at temperatures from 110 to 140°C. The calculated kd for DEKTP in MMA was 2.4 times lower (at 130°C) compared with that previously determined and reported in styrene (St). Density functional theory (DFT) calculations demonstrated that the decomposition of DEKTP molecule in MMA required higher interaction energy than in St, thus explaining its lower kd value. Bulk polymerization kinetics of MMA using DEKTP as the initiator revealed the presence of an induction period, in contrast with St polymerization, providing clear evidence of the solvation state influence at early polymerization stages. This work provides mechanistic insights into the interactions among the multi‐functional cyclic peroxide DEKTP and vinyl monomers; St and MMA, and their influence on the polymerization kinetics. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42905.  相似文献   

15.
VTMS/MMA/St三元共聚物的合成与表征   总被引:1,自引:0,他引:1  
以甲基丙烯酸甲酯(MMA)、苯乙烯(St)、乙烯基三甲氧基硅烷(VTMS)为单体通过乳液聚合制备了含有机硅氧烷的三元共聚物乳液;研究了单体配比与转化率之间的关系.并表征了共聚物的结构,测试了共聚物的热性能。结果表明,共聚物中成功地引入丁有机硅链节.聚合过程中部分硅氧烷部分发生水解,共聚物的热稳定性和玻璃化温度有一定提高。  相似文献   

16.
The organic–inorganic hybrid material poly(styrene‐methyl methacrylate)‐silica (P(St‐MMA )‐SiO2) was successfully prepared by in situ polymerization confirmed by Fourier transform infrared spectroscopy and was employed to fabricate poly(vinylidene fluoride‐hexafluoropropylene) (P(VDF‐HFP )) based composite polymer electrolyte (CPE ) membrane. Desirable CPEs can be obtained by immersing the CPE membranes into 1.0 mol L?1 LiPF6‐EC /DMC /EMC (LiPF6 ethylene carbonate + dimethyl carbonate + ethylmethyl carbonate) liquid electrolyte for about 0.5 h for activation. The corresponding physicochemical properties were characterized by SEM , XRD , electrochemical impedance spectroscopy and charge–discharge cycle testing measurements. The results indicate that the as‐prepared CPEs have excellent properties when the mass ratio of the hybrid P(St‐MMA )‐SiO 2 particles to polymer matrix P(VDF‐HFP ) reaches 1:10, at which point the SEM analyses show that the as‐prepared P(St‐MMA )‐SiO 2 particles are uniformly dispersed in the membrane and the CPE membrane presents a homogeneous surface with abundant interconnected micropores. The XRD results show that there may exist interaction forces between the P(St‐MMA )‐SiO 2 particles and the polymer matrix, which can obviously decrease the crystallinity of the composite membrane. Moreover, the ionic conductivity at room temperature and the electrochemical working window of the CPE membrane can reach 3.146 mS cm?1 and 4.7 V, respectively. The assembled LiCoO2/CPE /Li coin cell with the CPE presents excellent charge–discharge and C ‐rate performance, which indicates that P(St‐MMA )‐SiO 2 hybrid material is a promising additive for the P(VDF‐HFP ) based CPE of the lithium ion battery. © 2016 Society of Chemical Industry  相似文献   

17.
N‐cyclohexylmaleimide (ChMI) and styrene (St) were polymerized with methyl methacrylate (MMA) at different St feed content by suspension polymerization method. The glass transition temperatures (Tg) of the terpolymers were detected by torsional braid analysis (TBA). Two transition peaks in TBA curves of the terpolymers with a high St content illustrated that these terpolymers have a heterogeneous chain structure and the phase separation occurred. The lower transition temperature, Tg1, was assigned to the random St‐MMA components, and the higher transition temperature, Tg2, was assigned to the St‐ChMI units‐rich segments. Thermogravimetric analyses (TGA) revealed that all the terpolymers showed a two‐step degradation process. The tensile strength of the terpolymers decrease with increasing St content while the impact strength tended to increase slightly. The rheological behavior of the terpolymers was also detected. The result illustrated that the terpolymers showed rheological behavior similar to that of pseudoplastic liquid. The apparent shear viscosity decreased with the increasing of St content. All terpolymers have a higher value of flow n than the poly(MMA‐co‐ChMI). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 918–922, 2006  相似文献   

18.
This study focuses on the preparation of compatible blends with the poly(methyl methacrylate) (PMMA) using a reactive terpolymer maleic anhydride–styrene–vinyl acetate (MA–St–VA). In the first series of experiments, binary blends of the PMMA and the MA–St–VA terpolymer have been prepared in tetrahydrofurane. The PMMA and the MA–St–VA terpolymer formed the compatible blends. The effects on thermomechanical properties of MA–St–VA terpolymer ratio in the blends were studied. The glass transition temperatures (Tg), thermal expansion coefficient (α), and other thermomechanical parameters for the blends have been established by TMA method and the compatibility of two polymers has been evaluated by these TMA parameters. The addition of MA–St–VA terpolymer to PMMA made a plasticizing effect on PMMA. This effect regularly changed with the increasing of the terpolymer in the blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 363–367, 2006  相似文献   

19.
Infrared laser‐ignited horizontal frontal polymerization is applied for the synthesis of unsaturated polyester resin (UPER) by copolymerizing unsaturated polyester with styrene (St), methyl methacrylate (MMA), and 2‐dimethylamino ethyl methacrylate (DMAEMA) monomers. Dependence of frontal velocity and temperature on the initiator and monomer concentration is discussed for St‐based UPER. These resins have also been characterized by Fourier transform infrared, thermogravimetric analysis, and scanning electron microscopy. The results reveal St‐based resins have superior crosslinked networks. Besides, the thermo‐pH responsiveness behaviors of DMAEMA‐based resins are demonstrated by swelling measurements under the conditions of different temperatures and pH values. Moreover, by introducing CdSe@ZnS quantum dots and CsPbBr3 perovskites into St‐ and MMA‐based resins, respectively, we realize the in situ generation of CdSe@ZnS‐UPER and CsPbBr3‐UPER composites with good fluorescence properties and fluorescent stability, which have potential application in optoelectronic devices such as light‐emitting diode and perovskite solar cells. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45935.  相似文献   

20.
A facile, safe, and inexpensive reducing agent, sodium hypophosphite (NaH2PO2·H2O), has been successfully used to perform ambient temperature living radical polymerizations of methyl methacrylate (MMA) and styrene (St). The rapid radical polymerizations were readily obtained at 25°C, i.e., MMA reached a conversion of ca 90% after 2.5 h, and St reached a conversion of ca 80% after 40 h. The polymerizations of MMA and St exhibited excellent living/controlled nature, as evidenced by pseudo first‐order kinetics of polymerization, linear evolution of molecular weights with increasing monomer conversions, and narrow molecular weight distributions. The various experimental parameters—ligand, solvent, and molar ratio of NaH2PO2·H2O to CuSO4·5H2O—were varied to improve the control of polymerization, molecular weight, and molecular weight distribution. 1H NMR analyses and chain‐extension reactions confirm the high chain‐end functionality of the resultant poly(methyl methacrylate) and polystyrene. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42123.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号