首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Self‐assembly of different sized colloidal particles into multicomponent crystals results in novel material properties compared to the properties of the individual components alone. The formation of binary and, for the first time, ternary colloidal crystals through a simple and inexpensive confined‐area evaporation‐induced layer‐by‐layer (LBL) assembly method is reported. The proposed method produces high quality multicomponent colloidal crystal films over a broad range of particle size‐ratios and large surface areas (cm2) from silica/polystyrene colloidal suspensions of low concentration. By adjusting the size‐ratio and concentration of the colloidal particles, complex crystals of tunable stoichiometries are fabricated and their structural characteristics are further confirmed with reported crystal analogues. In addition, complex structures form as a result of the interplay of the template layer effect, the surface forces exerted by the meniscus of the drying liquid, the space filling principle, and entropic forces. Thus, this LBL approach is a versatile way to grow colloidal crystals with binary, ternary, or more complex structures.  相似文献   

2.
Surfaces with micro‐ and nanometer‐scale patterns have many potential applications, particularly in lifescience. This article reports on a versatile, straightforward, and inexpensive approach for the creation of chemical patterns using fabricated binary colloid crystals, consisting of small and large particles, as masks for the deposition of an amino‐functionalised ultrathin film by plasma polymerization. After removal of the binary colloidal mask, the characterization techniques [scanning electron microscopy (SEM) and atomic force microscopy (AFM)] reveal a surface contrast that depicts an ability of the small particles to allow diffusion of the plasma to the substrate. A plasma‐polymer film is created under the small particles and the region of substrate in direct contact with the large particle remains uncoated. Numerous types of patterns and feature heights can be produced with good fidelity over areas of several cm2 by appropriate tuning of the binary colloid crystal mask morphology and the plasma‐polymer deposition time. Finally, the amine groups of the patterned surface are used for covalent grafting poly(ethylene glycol) propionaldehyde (PEG‐PALD) by reductive amination under conditions of reduced solubility to produce a patterned surface for directed adsorption of protein. AFM investigations show that the proteins are preferentially attached to the nanometer‐scale regions of the pattern without PEG‐PALD.  相似文献   

3.
Hexagonally arrayed structures of colloidal crystals with uniform surface are a good candidate for master molds to be used in soft lithography. Here, the fabrication of periodically arrayed nanostructures using poly(dimethylsiloxane) (PDMS) molds based on three‐dimensionally (3D) ordered colloidal crystals is reported. A robust, high‐quality 3D colloidal‐crystal master molds is prepared using the colloidal suspension containing a water‐soluble polymer. The surface patterns of the 3D colloidal crystals can then be transferred onto a polymer film via soft lithography, by means of the replication of the surface pattern with PDMS. Various hexagonally arrayed nanostructure patterns can be fabricated, including close‐packed and non‐close‐packed 2D arrays and honeycomb structures by the structural modification of the 3D colloidal‐crystal templates. The replicated hexagonally arrayed structures can also be used as templates for producing colloidal crystals with 2D superlattices.  相似文献   

4.
5.
Evaporation‐induced self‐assembly of colloidal particles is one of the most versatile fabrication routes to obtain large‐area colloidal crystals; however, the formation of uncontrolled “drying cracks” due to gradual solvent evaporation represents a significant challenge of this process. While several methods are reported to minimize crack formation during evaporation‐induced colloidal assembly, here an approach is reported to take advantage of the crack formation as a patterning tool to fabricate microscopic photonic structures with controlled sizes and geometries. This is achieved through a mechanistic understanding of the fracture behavior of three different types of opal structures, namely, direct opals (colloidal crystals with no matrix material), compound opals (colloidal crystals with matrix material), and inverse opals (matrix material templated by a sacrificial colloidal crystal). This work explains why, while direct and inverse opals tend to fracture along the expected {111} planes, the compound opals exhibit a different cracking behavior along the nonclose‐packed {110} planes, which is facilitated by the formation of cleavage‐like fracture surfaces. The discovered principles are utilized to fabricate photonic microbricks by programming the crack initiation at specific locations and by guiding propagation along predefined orientations during the self‐assembly process, resulting in photonic microbricks with controlled sizes and geometries.  相似文献   

6.
Colloidal monolayers with high order and increased complexity beyond plain hexagonal packing geometries are useful for 2D templating of surface nanostructures and lithographic applications. Here, binary colloidal monolayers featuring a close‐packed monolayer of large spheres (L) with a superlattice of small particles (S) are prepared in a single step using a Langmuir trough. Adjustment of the stoichiometry of the two particle types at the air–water interface leads to a high degree of control over the occupation of the interstitial sites in the close‐packed layer of large spheres by the small colloids. Thus, large areas of binary 2D crystals with LS2, LS6, and LS9 structures are fabricated in a controlled way. The process allows the formation of binary crystals over a wide range of particle size ratios from 0.19 to 0.40. The pH value of the subphase can be used to enhance the crystallization process by changing the contact angle of the particles at the interface. An interfacial polymerization of butyl cyanoacrylate is used to directly image the contact angle of the colloids at the interface. Transfer to solid substrates is achieved by a surface lowering technique. A variety of substrates with arbitrary topographies can thus be decorated with colloidal monolayers. Applied to a lithographic process, such monolayer architectures allow the generation of complex patterns, not accessible with conventional close‐packed monolayers.  相似文献   

7.
A novel interfacial energy driven colloidal lithography technique to fabricate periodic patterns from solution‐phase is presented and the feasibility and versatility of the technique is demonstrated by fabricating periodically arranged ZnO nanowire ensembles on Si substrates. The pattern fabrication method exploits different interfaces formed by sol–gel derived ZnO seed solution on a hydrophobic Si surface covered by a monolayer of colloidal silica spheres. While the hydrophobic Si surface prevents wetting by the seed solution, the wedge shaped regions surrounding the contact point between the colloidal particles and the Si substrate trap the solution due to interfacial forces. This technique allows fabrication of uniform 2D micropatterns of ZnO seed particles on the Si substrate. A hydrothermal technique is then used to grow well‐defined periodic assemblies of ZnO nanowires. Tunability is demonstrated in the dimensions of the patterns by using silica spheres with different diameters. The experimental data show that the periodic ZnO nanowire assembly suppresses the total reflectivity of bare Si by more than a factor of 2 in the wavelength range 400–1300 nm. Finite‐difference time‐domain simulations of the wavelength‐dependent reflectivity show good qualitative agreement with the experiments. The demonstrated method is also applicable for other materials synthesized by solution chemistry.  相似文献   

8.
Ordered arrays of luminescent YVO4:Eu3+ films with square (side length 19.17 ± 2.05 μm) and dot (diameter 11.20 ± 1.82 μm) patterns were fabricated by two kinds of soft lithography processes, namely, microtransfer molding (μTM) and microcontact printing (μCP), respectively. Both soft‐lithography processes utilize a PDMS elastomeric mold as the stamp combined with a Pechini‐type sol‐gel process to produce luminescent patterns on quartz plates, in which a YVO4:Eu3+ precursor solution was employed as ink. The ordered luminescent YVO4:Eu3+ patterns are revealed by optical micro­scopy and their microstructure, consisting of nanometer‐scale particles, is unveiled by scanning electronic microscopy (SEM) observations. Additionally, photoluminescence (PL) and cathodoluminescence (CL) were carried out to characterize the patterned YVO4:Eu3+ samples. A strong red emission as a result of 5D07F2 transition of Eu3+ was observed under UV‐light or electron‐beam excitation, which implies that combining soft lithography with a Pechini‐type sol‐gel route has potential for fabricating rare‐earth luminescent pixels for next‐generation field‐emission display devices.  相似文献   

9.
A simple protocol for the fabrication of three‐dimensional (3D) photonic crystals in silicon is presented. Surface structuring by nanosphere lithography is merged with a novel silicon etching method to fabricate ordered 3D architectures. The SPRIE method, sequential passivation reactive ion etching, is a one‐step processing protocol relying on sequential passivation and reactive ion etching reactions using C4F8 and SF6 plasma chemistries. The diffusion of fresh reactants and etch product species inside the etched channels is found to play an important role affecting the structural uniformity of the designed structures and the etch rate drift is corrected by adjusting the reaction times. High quality photonic crystals are thus obtained by adding the third dimension to the two‐dimensional (2D) colloidal crystal assemblies through SPRIE. Careful adjustments of both mask design and lateral etch extent balance allow the implementation of even more complex functionalities including photonic crystal slabs and precise defect engineering. 3D photonic crystal lattices exhibiting optical stop‐bands in the infrared spectral region are demonstrated, proving the potential of SPRIE for fast, simple, and large‐scale fabrication of photonic structures.  相似文献   

10.
11.
A novel method of fabricating multifaceted and nanobored particle arrays via colloidal lithography using colloidal‐crystal layers as masks for anisotropic reactive‐ion etching (RIE) is reported. The shape of the sculpted particles is dependent on the crystal orientation relative to the etchant flow, the number of colloidal layers, the RIE conditions, and the matrix (or mask) structure in colloidal lithography. Arrays of non‐spherical particles with sculpted shapes, which to date could not otherwise be produced, are fabricated using a tilted anisotropic RIE process and the layer‐by‐layer growth of a colloidal mask. These non‐spherical particles and their ordered arrays can be used for antireflection surfaces, biosensors, and nanopatterning masks, as well as non‐spherical building blocks for novel colloidal crystals. In addition, polymeric particles with patterned holes of controlled depths obtained by the present method can be applied to the fabrication of functional composite particles.  相似文献   

12.
软印刷技术     
软印刷技术是基于弹性体印章/模具来转移图形结构的微纳加工技术。详细介绍了软印刷技术中转移图形结构的多种方式,并探讨软印刷技术在微纳电子学、光学、传感器、生物等领域的广泛应用。对软印刷技术的弹性体印章/模具制备、聚二甲基硅氧烷的属性、理论研究等进行了探讨。  相似文献   

13.
电子束光刻制造软刻蚀用母板的研究   总被引:1,自引:0,他引:1  
使用通用电子束曝光机,采用一种新的电子束微三维加工的重复增量扫描方式进行曝光实验,显影后得到轮廓清晰的微三维结构,以此为制作弹性印章的母模板,经硅烷化后可用来制作弹性印章,得到弹性印章后便可再利用软刻蚀相关技术进行微图形的复制.曝光实验的结论表明采用电子束重复增量扫描方式可用来制作微三维弹性印章的母版.  相似文献   

14.
A scalable method for site‐selective, directed self‐assembly of colloidal opals on topologically patterned substrates is presented. Here, such substrate contains optical waveguides which couple to the colloidal crystal. The site‐selectivity is achieved by a capillary network, whereas the self‐assembly process is based on controlled solvent evaporation. In the deposition process, a suspension of colloidal microspheres is dispensed on the substrate and driven into the desired crystallization sites by capillary flow. The method has been applied to realize colloidal crystals from monodisperse dielectric spheres with diameters ranging from 290 to 890 nm. The method can be implemented in an industrial wafer‐scale process.  相似文献   

15.
Direct patterning of oxides using thermal nanoimprint lithography is performed using either the sol‐gel or methacrylate route. The sol‐gel method results in resists with long shelf‐life, but with high surface energy and a considerable amount of solvent that affects the quality of imprinting. The methacrylate route, which is limited to certain oxides, produces polymerizable resists, leading to low surface energy, but suffers from the shorter shelf‐life of precursors. By combining the benignant elements from both these routes, a universal method of direct thermal nanoimprinting of oxides is demonstrated using precursors produced by reacting an alkoxide with a polymerizable chelating agent such as 2‐(methacryloyloxy)ethyl acetoacetate (MAEAA). MAEAA possesses β‐ketoester, which results in the formation of environmentally stable, chelated alkoxide with long shelf‐life, and methacrylate groups, which provide a reactive monomer pendant for in situ copolymerization with a cross‐linker during imprinting. Polymerization leads to trapping of cations, lowering of surface energy, strengthening of imprints, which enables easy and clean demolding over 1 cm × 2 cm patterned area with ≈100% yield. Heat‐treatment of imprints gives amorphous/crystalline oxide patterns. This alliance between two routes enables the successful imprinting of numerous oxides including Al2O3, Ga2O3, In2O3, Y2O3, B2O3, TiO2, SnO2, ZrO2, GeO2, HfO2, Nb2O5, Ta2O5, V2O5, and WO3.  相似文献   

16.
Photonic crystal (PC) films are prepared by precipitation of colloidal crystal seeds in supersaturated solution of particles, followed by crystal growth and structure fixing with photo‐polymerization. As the liquid monomer becomes a solid matrix, the highly concentrated particles are forced to precipitate into colloidal microcrystals in short time, and ‘polymerization‐induced colloidal assembly’ (PICA) is shown to be the major driving force to form colloidal crystals. PICA is intrinsically different from evaporation‐induced colloidal assembly, because the seed formation and crystal growth are separated into two independent steps, which makes the synthesis more flexible, controllable, and efficient. The PICA process is capable of quickly producing PC films with an ultra‐narrow bandgap, tunable thickness, and large size. Based on these characteristics and the blocking effect of the outer PC layer to the reflection signal of inner layer, a coding–decoding system is developed in which the film's composition and stacking sequence can be identified by its distinctive reflection spectrum.  相似文献   

17.
18.
Non‐spherical colloidal nanoparticles have great potential for applications owing to their enhanced directional properties. However, the lack of methods to precisely assemble them on surfaces has hindered exploitation of their properties for planar devices. Here, the oriented assembly of short gold nanorods with lengths below 100 nm from colloidal suspensions is demonstrated. A locally induced phase transition confines the colloidal nanorods at a receding three‐phase contact line that is controllably moved over a nanostructured surface in a capillary assembly process. Dedicated topographical trapping sites allow for aligned assembly of the nanorods on the single‐particle level. The feasibility of this method is demonstrated by assembling nanorods into long‐range‐ordered, non‐close packed arrays that could serve as anti‐counterfeit labels by virtue of their distinct optical appearance in the far‐field. Furthermore, oriented nanorod dimers that are deterministically assembled have the potential to function as nano‐plasmonic antenna devices.  相似文献   

19.
20.
Interactive materials capable of changing appearance upon exposure to external stimuli, such as photonic inks, are generally difficult to achieve on a large scale as they often require self‐assembly processes that are difficult to control macroscopically. Here this problem is overcome by preparing arrays of cellulose nanocrystal (CNC) microfilms from discrete nanoliter sessile droplets. The obtained microfilms show extremely uniform and intense color, enabling exceptional consistency in optical appearance across the entire array. The color can be controlled through the initial ink formulation, enabling the printing of polychromatic dot‐matrix images. Moreover, the high surface‐to‐volume ratio of the microfilms and the intrinsic hydrophilicity of the natural building block allow for a dramatic real‐time colorimetric response to changes in relative humidity. The printed CNC microfilm arrays overcome the existing issues of scalability, optical uniformity, and material efficiency, which have held back the adoption of CNC‐based photonic materials in cosmetics, interactive‐pigments, or anticounterfeit applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号