首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wool is a naturally occurring composite fiber consisting of keratin and keratin‐associated proteins as the key molecular components. The outermost surface of wool comprises a lipid layer that renders the surface hydrophobic, which hinders certain fabric processing steps and moisture management properties of wool fabrics. In this study, Linde Type A (LTA) nano‐zeolite (a Na+‐, Ca2+‐, and K+‐exchanged type A zeolite) was integrated onto the surface of wool using 3‐mercaptopropyl trimethoxy silane as a bridging agent. The resultant surface morphology, hydrophilicity, and mechanical performance of the treated wool fabrics were evaluated. Notably, the surface hydrophilicity of wool increased dramatically. When wool was treated with a dispersion of 1 wt % zeolite and 0.2 wt % silane, the water contact angle decreased from an average value of 148° to 50° over a period of approximately 5 min. Scanning electron microscopic imaging indicated good coverage of the wool surface with zeolite particles, and infrared spectroscopic evaluation demonstrated strong bonding of the zeolite to wool keratins. The zeolite application showed no adverse effects on the tensile and other mechanical properties of the fabric. This study indicates that zeolite‐based treatment is potentially an efficient approach to increasing the surface hydrophilicity and modifying other key surface properties such as softness of wool and wool fabrics. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42392.  相似文献   

2.
The introduction of bulky aryl residues into wool fibres not only enhances their disperse dyeability but also improves their settability, shrink resistance and imparts easy‐care properties. It would be highly desirable for colourists to achieve such effects when dyeing or printing wool from an aqueous solution as wool/polyester blend fabrics could be dyed and printed with the same dye; furthermore, in the case of an all‐wool fabric pretreated with such arylating systems, following dyeing or printing with disperse dyes, dye fixation can be achieved by dry heat procedures. A water‐soluble, fibre‐reactive arylating agent, sodium benzoyl thiosulphate, was therefore synthesised, characterised and its stability to hydrolysis in aqueous media was examined.  相似文献   

3.
The pH‐dependent surface properties of a gelatin–alkenylsuccinic acid anhydride derived surfactants, containing an oligopeptide residue and alkenyl groups, were studied. The surface properties examined included surface tension, contact angle, emulsifying power, and fluorescence properties. The results showed that the surface activities of gelatin derivatives and their detergent properties for T/W fabrics are improved at low pH. These improved features make gelatin‐derived surfactants suitable for use as cleaning agents for lime‐degradable substrates such as hair and wool. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

4.
The behaviour of two surface–active agents (anionic and cationic) in the dyeing of Hercosett wool with reactive dyes of the α–bromoacry/amide type has been studied. The influence of pH, concentration of dye and surface–active agent, temperature and time on the percentage of the dye adsorbed and reacted is studied. Due to the complexity of this subject, a central rotatable plan of five variables has been used. The results found are represented in three–dimensional graphs, and are examined through the possible mechanisms that operate in the dyeing process, considering the nature of the anionic and cationic agents used.  相似文献   

5.
Wool is a natural composite material consisting of keratin and keratin‐associated proteins as the key molecular components. During wool product processing, a variety of chemical and enzymatic reagents are used, the side‐effects of which can include the removal of the outside layers of the fiber (cuticle) and damage within the internal protein matrix of the fiber. This can reduce the mechanical strength and durability of wool fabrics. We report the use of neutral, cationic, and anionic carbohydrate polymers, namely 2‐hydroxyethyl cellulose, chitosan and alginate, as repair agents to improve the mechanical properties and morphology of wool fabrics damaged under harsh alkaline conditions. Tensile strength, peel adhesion, scanning electron micrographs, and fabric wettability evaluation reveal the cationic polymer, chitosan, to be most effective at remedying the effects of the alkaline treatment. The improved mechanical properties observed after chitosan treatment may offer viable remediation routes for adding value to processing‐damaged wool textiles. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3105–3111, 2013  相似文献   

6.
Surface active properties of sulfonated isoricinoleic acid   总被引:1,自引:0,他引:1  
A new anionic surfactant, sulfonated isoricinoleic acid, was prepared by sulfonation of isoricinoleic acid. Surface active properties, such as surface tension, interfacial tension, emulsifiability, dispersibility and foaming power of sulfonated isoricinoleic acid (SIRA), and sulfonated castor oil or turkey red oil (TRO) were studied and compared. The comparative studies showed that SIRA is a better surface active agent than TRO.  相似文献   

7.
This study examines in detail the influence of low‐temperature plasma and biopolymer chitosan treatments on wool dyeability. Wool knitted fabrics were treated and characterized by whiteness and shrink‐resistance measurements. Surface modification was assessed by contact‐angle measurements of human hair fibers, which were used as a model to study the wetting properties of the treated wool knitted fabrics. The dyeing behavior was assessed from the diffusion mechanism point of view. The dyeing kinetics were measured at two different pHs (4.2 and 6.5) and three different temperatures (60, 85, and 100°C) to gain information about the contribution of the surface modification treatment to the dyeing mechanism. The exhaustion and reflectance data were compared, and the apparent diffusion coefficients were calculated. On the basis of the obtained results, a model for the dyeing mechanism of the chitosan treated wool was proposed. When treated with chitosan, the polymer sheath spread on the surface of the fibers acted as a predominant dyeing site in very short dyeing times, thus interacting with the dye and in later stages imparting the dye to the wool fiber. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2204–2214, 2005  相似文献   

8.
9.
New copolymer materials have been prepared by chemical grafting of oligomeric 3‐hydroxybutyric acid (OHB) onto polypyrrole (PPy) derivatives. The influence of grafting density and molecular weight of OHB brushes on the physicochemical properties of prepared copolymers was investigated. PPy substrates were prepared by FeCl3‐driven oxidative homopolymerization of N‐(2‐carboxyethyl)pyrrole or its copolymerization with pyrrole. The grafting method employed involved controlled anionic polymerization of β‐butyrolactone on pyrrole‐tethered potassium carboxylate active sites. Obtained PPy‐g‐OHB copolymers of varying grafting density and pendant polyester chain length were characterized and the observed structure–property relationships discussed. The impact of real time exposure to phosphate‐buffered saline environment was investigated and the residue products were characterized. Cross‐correlation of spectroscopic, thermal, electrical and elemental analysis data afforded comprehensive evaluation of the structure of prepared materials and their behaviour in hydrolytic medium. Erosion and degradation pathways have been identified, indicating ways to consciously tailor the physicochemical properties of these new biomimetic materials. © 2016 Society of Chemical Industry  相似文献   

10.
Self‐cleaning wool has been realized by treatment with a colloidal sol of anatase nanocrystals. However, the mechanical properties of wool have been significantly deteriorated following the self‐cleaning functionalization treatment. To minimize the undesirable side‐effects induced by the nanocoating, a silicone surface modification post‐treatment has been introduced. The change in mechanical properties of TiO2‐coated wool after modification with silicone was examined, and the effect of this process on the photocatalytic activity and its stability was assessed by a degradation test of food stains. Moreover, the wettability of wool has been modified using different nonionic wetting agents, in an attempt to shorten the wetting time during dip‐coating and the absorption rate was compared. The effect of wetting agents on the functionalization process and the photocatalytic activity was examined. The synchronized effect of wettability and silicone surface modification on the self‐cleaning functionalization of wool was also studied. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
Pretreatment of wool fabric with low-temperature plasma (LTP) as an eco-friendly process was tested. The impact of plasma-treatment parameters on the surface morphology, physical-chemical, and dyeing properties of wool using anionic dyes were investigated. The LTP-treatment resulted in a dramatic improvement in fabric hydrophilicity and wettability, the removal of fiber surface material, and creation of new active sites along with improved initial dyeing rate. The nature of the plasma gas governed the final exhaustion percentage of the used acid dyes according to the following descending order: nitrogen plasma > nitrogen/oxygen (50/50) plasma > oxygen plasma > argon plasma ≥ control. Prolonging the exposure time up to 20 minutes resulted in a gradual improvement in the extent of exhaustion. Increasing the ageing period up to 100 hours resulted in a slight decrease in the extent of acid dye uptake. Increasing the salt concentration up to 5 g/L and the dyeing temperature up to 95°C resulted in an enhancement in the extent of exhaustion. The extent of improvement in dye bath exhaustion, using low temperature nitrogen plasma (LTNP)-treatment, was determined by the nature of the anionic dyes.  相似文献   

12.
Bacterial contamination of surfaces is a natural and spontaneous process that often results in the formation of biofilms. The extracellular matrix of biofilm is mostly composed of proteins, polysaccharides, and extracellular DNA and is responsible for the strong persistent ability of biofilm in the food industry. Despite cleaning and disinfection processes, persistent bacteria cause a major problem in food processing environments. Synthetic surfactants, mainly anionic surface-active agent, are commonly used as detergents, foaming agents, wetting agents, emulsifiers, and dispersants. Their tendency to adsorb to surfaces and interfaces and modify their surface tension, is considered among their main properties. They also have the ability to attach to bioactive macromolecules such as proteins, peptides, and DNA causing cell membrane damage. In order to estimate the adhesion kinetic and proliferation of pathogenic bacteria Staphylococcus aureus, the surface of glass was coated with anionic surfactant Sodium Lauryl Sulfate (SLS). Moreover, SLS was added in suspension with the culture medium. The physicochemical properties of the material were calculated using the contact angle measurement method and bacterial hydrophobicity using the microbial adhesion to hydrocarbons (MATH) test. The obtained results showed that the number of adhering cells increased gradually as a function of time. However, changing the surface properties of the glass and S. aureus has affected the rate of adherent cells with time as well as their organization. SLS inhibited the attachment of cells, whether it is added with the microbial suspension or at the surface of the support. Generally, the present article points to a relationship between the microbial adhesion, the surface chemistry of the solid material and the bacteria, and the suspension properties.  相似文献   

13.
张毅  姜迎雪  张昊 《化工进展》2020,39(7):2810-2816
以三乙胺和环氧氯丙烷为原料,合成醚化剂3-氯-2-羟丙基三乙基氯化铵。以甲壳素为原料通过醚化反应合成了季铵型甲壳素(CCT),再经脱乙酰得到季铵型阳离子改性壳聚糖(CCTS)。采用红外光谱(FTIR)、核磁碳谱(13C NMR)对其化学结构进行了表征,运用黏度法和分光光度法测定了黏均分子量和溶解性等理化性能。采用最小抑菌法对CCTS的抗菌活性进行了测定,得到其对大肠杆菌的最低有效抑菌浓度(MIC)为0.2g/L,优于天然壳聚糖的MIC值。以柠檬酸为交联剂、次磷酸钠为催化剂,用CCTS对兔毛织物进行抑菌整理,考察织物经整理的抑菌效果和耐洗性。经5次洗涤后结果表明,CCTS对大肠杆菌的抑菌率达99.9%以上,抑菌率高于CCT和天然壳聚糖,是一种针对动物毛织物良好的天然高分子长效抑菌整理剂。  相似文献   

14.
The influence of processing parameters on wettability improvement and its uniformity of wool fabric treated by atmospheric pressure plasma jet (APPJ) was explored. A woven wool fabric was treated by APPJ under various treatment conditions such as different treatment time, different oxygen flow rate, and different jet‐to‐substrate distance. The water absorption time of wool fabric was measured to determine wettability improvement. The diffusion photo of water droplet on wool fabric surface was taken by digital camera to reflect wettability uniformity. After APPJ treatment, SEM observation showed that the scales on the wool fiber surface directly facing plasma jet pores were destroyed than those on the other fiber surface. XPS analysis showed that the carbon concentration substantially decreased. The concentration of oxygen and nitrogen significantly increased and but the concentration of sulfur and silicon did not obviously changed. With the addition of oxygen gas, more polar groups such as hydroxyl and carboxyl produced on wool fiber surface. The water absorption time of wool fabric greatly reduced indicating wettability improvement. The diffusion of water droplet on wool fabric surface was also larger and more homogenous suggesting uniform plasma treatment. It was concluded that the wettability improvement and its uniformity of the treated wool fabric increased and then decreased with the increasing oxygen flow rate and jet‐to‐substrate distance, and increased with the increasing treatment time. Therefore to achieve reasonable wettability and its uniformity of the wool fabric treated by APPJ, plasma treatment conditions have to be carefully chosen. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Walnut green husk is one of the main waste products from walnut and could be used as a source of natural dyeing compounds such as juglone. The present study was conducted to evaluate the effective use of walnut green husk extract as a natural hair dye. Dyeing properties, fastness and antimicrobial behaviours of dyed hair and also a skin irritation test for natural hair dye on rat skin were examined. When the extract was mixed with ascorbic acid as a developer, ferrous sulphate as a mordant, and Aloe vera extract used as a secondary mordant and also a cosmetic ingredient, the reaction resulted in a dark‐brown colour on hair samples. The dyed hair exhibited appropriate colour strength having excellent morphology for a hair surface coated with dye molecules. In addition, the dyed hair possessed good resistance to washing and daylight fastness, without any irritant properties as shown in a rat model, although high concentrations of iron‐based mordant may be problematic for long‐term usage. This paper also suggests the use of natural mordants such as lactic and oxalic acids to avoid any probable risks. Walnut green husk extract was an appropriate natural hair dyeing agent in practice and showed maximum antimicrobial activity compared with semi‐synthetic and commercial hair dyes. The results demonstrated that walnut green husk can be used as an economical, valuable, eco‐friendly and safe source of dyeing and antimicrobial agents for cosmetic products.  相似文献   

16.
This paper aimed to examine how the amphoteric conditioner poly (acrylamide‐′acryloyloxyethyl trimethyl ammonium chloride ?2‐acrylamido‐2‐methyl‐propane sulfonate) (PADA) with different anionic degrees (AD) affected the properties of sludge flocs in the conditioning. The floc properties were characterized by morphological parameters (floc size distribution, fractal dimension, specific surface area, and pore volume), physical properties (floc strength and surface charge density), and chemical constituents (Fe3+, Al3+ and extracellular polymeric substances (EPS), including the polymeric proteins and carbohydrates). The results of this investigation revealed that (1) morphological properties of flocs were associated with anionic degree, particularly in the range of 0–4%, where the anionic degree led to a shift of the particle size toward groupings of larger diameter, meanwhile better regularity and increased compactness of floc structure formed. (2) The introduction of the anionic groups indeed had bad effects on flocs in terms of its stability and charge neutralization, but the downtrend could be inhibited by adjusting the anionic degree of polymer to a reasonable level. (3) The dissolved EPS for sludge followed a role of decreasing firstly then increasing with increased anionic degree, but the content of bound EPS kept nearly constant. (4) The polymer with anionic groups had apparent effects on enrichment of metal ions. POLYM. ENG. SCI., 57:197–205, 2017. © 2016 Society of Plastics Engineers  相似文献   

17.
Low temperature plasma (LTP) treatment was applied to wool fabric with the use of a nonpolymerizing gas, namely oxygen. Properties of the LTP‐treated samples including low stress mechanical behavior, air permeability, and thermal characteristics were evaluated in this study. Kawabata evaluation system fabric (KES‐F) was employed to determine the tensile, shearing, bending, and compression strength properties and surface roughness of the specimens. The changes in these properties are believed to be closely related to the interfiber and interyarn frictional force induced by the LTP. The decrease in the air permeability of the LTP‐treated wool fabric was found to be probably because of the plasma action effect on increasing the fabric thickness and a change in fabric surface morphology, which was confirmed by scanning electron microscopy micrographs. The change in the thermal properties of the LTP‐treated wool fabric was in good agreement with the earlier findings and can be attributed to the amount of air trapped between the yarns and fibers. This study suggested that the LTP treatment can influence the final properties of the wool fabric, and also provide information for developing LTP‐treated wool fabric for industrial use. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5958–5964, 2006  相似文献   

18.
Two models of temporarily anionic sulphatoethylsulphone reactive disperse dyes were applied to wool, polyester and wool/polyester blend fabrics at different dyeing pH. Maximum exhaustion values and colour yield were observed at pH 7. The results showed that reactive disperse dyes containing bis‐sulphatoethylsulphone reactive groups were more convenient for neutral dyeing of wool and wool/polyester blend fabrics if compared with a dye containing a mono‐sulphatoethylsulphone group. Excellent to very good wet fastness properties on all dyed fabrics were achieved.  相似文献   

19.
有机硅表面活性剂在日化及纺织行业的应用   总被引:11,自引:0,他引:11  
概述了有机硅表面活性剂的种类及其在日化,纺织行业的应用状况,阳离子型有机硅表面活性剂具有抗菌,抗静电,柔软,滑爽等特点,可广泛用作织物抗菌整理剂,柔软整理剂及头发调理剂,阴离子型有机硅表面活性剂具有超低的表面张力,广泛用作湿润剂,亲水剂,乳化剂,流平剂,消泡剂等。  相似文献   

20.
Wool was treated with inorganic and polymer‐based nanoparticles. The diffusion of nanoparticles into wool appears to be dependent on electrostatic interactions. In particular, it is optimised at low pH in which there are very few anionic groups on the wool fibre; the nanoparticles also need to have sufficient charge to maintain their stability as dispersion. The findings support the view that the cell membrane complex and other low sulphur regions are the main route of entry for both molecular and macromolecular treatment chemicals. The use of this technique to treat wool may lead to new coloration effects and other functions such as antimicrobial action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号