首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of lead‐free piezoceramics has attracted great interest because of growing environmental concerns. A polymorphic phase transition (PPT) has been utilized in the past to tailor piezoelectric properties in lead‐free (K,Na)NbO3 (KNN)‐based materials accepting the drawback of large temperature sensitivity. Here a material concept is reported, which yields an average piezoelectric coefficientd33 of about 300 pC/N and a high level of unipolar strain up to 0.16% at room temperature. Most intriguingly, field‐induced strain varies less than 10% from room temperature to 175 °C. The temperature insensitivity of field‐induced strain is rationalized using an electrostrictive coupling to polarization amplitude while the temperature‐dependent piezoelectric coefficient is discussed using localized piezoresponse probed by piezoforce microscopy. This discovery opens a new development window for temperature‐insensitive piezoelectric actuators despite the presence of a polymorphic phase transition around room temperature.  相似文献   

2.
A structure–property relationship in all‐organic dye solar cells is revealed by first‐principles molecular dynamics and real‐time time‐dependent density functional theory simulations, accompanied with experimental confirmation. An important structural feature at the interface, Ti–N anchoring, for a broad group of all‐organic dyes on TiO2 is inferred from energetics, vibrational recognition, and electronic data. This fact is contrary to the usual assumption; however, it optimizes electronic level alignment and photoelectron injection dynamics, greatly contributing to the observed efficiency improvement in all‐organic cyanoacrylate dye sensitized solar cells.  相似文献   

3.
The possibility to tailor ferroelectricity by controlling epitaxial strain in thin films and heterostructures of complex metal oxides is well established. Here it is demonstrated that apart from this mechanism, 3D film growth during heteroepitaxy can be used to favor specific domain configurations that lead to step‐like polarization switching and a giant nonlinear dielectric response in sub‐switching ac electric fields. A combination of cube‐on‐cube epitaxial growth and the formation of columnar structures during pulsed laser deposition of Pb0.5Sr0.5TiO3 films on La0.5Sr0.5CoO3 bottom electrode layers and MgO (001) substrates stabilizes ferroelectric nanodomains with enhanced dynamic properties. In the Pb0.5Sr0.5TiO3 films, a‐ and c‐oriented epitaxial columns grow from the bottom to the top of the film leading to random polydomain architectures with strong associations between the ferroelectric domains and the nanocolumns. Polarization switching in the two domain populations is initiated at distinctive fields due to domain wall pinning on column boundaries. Moreover, piezoelectric coupling between ferroelectric domains leads to strong interdomain elastic interactions, which result in an enhanced Rayleigh‐type dielectric nonlinearity. The growth of epitaxial films with 3D columnar structures opens up new routes towards the engineering of enhanced ferroelectric and electromechanical functions in a broad class of complex oxide materials.  相似文献   

4.
Direct observations of the ferroelectric domain boundaries in LiNbO3 are performed using high‐resolution high‐angle annular dark field scanning transmission electron microscopy imaging, revealing a very narrow width of the domain wall between the 180° domains. The domain walls demonstrate local side‐way meandering, which results in inclinations even when the overall wall orientation follows the ferroelectric polarization. These local meanders contain kinks with “head‐to‐head” and “tail‐to‐tail” dipolar configurations and are therefore locally charged. The charged meanders are confined to a few cation layers along the polarization direction and are separated by longer stretches of straight domain walls.  相似文献   

5.
Synchrotron X‐ray diffraction data were used to determine the phase purity and re‐evaluate the crystal‐structure of Li4Ti5O12‐xBrx electrode materials (where the synthetic chemical inputs are x = 0.05, 0.10 0.20, 0.30). A maximum of x′ = 0.12 Br, where x′ is the Rietveld‐refined value, can be substituted into the crystal structure with at least 2% rutile TiO2 forming as a second phase. Higher Br concentrations induced the formation of a third, presumably Br‐rich, phase. These materials function as composite anodes that contain mixtures of TiO2, Li4Ti5O12‐xBrx, and a Br‐rich third, unknown, phase. The minor quantities of the secondary phases in combination with Li4Ti5O12‐xBrx where x′ ~ 0.1 were found to correspond to the optimum in electrochemical properties, while larger quantities of the secondary phases contributed to the degradation of the performance. In situ neutron diffraction of a composite anatase TiO2/Li4Ti5O12 anode within a custom‐built battery was used to determine the electrochemical function of the TiO2 component. The Li4Ti5O12 component was found to be electrochemically active at lower voltages (1.5 V) relative to TiO2 (1.7 V). This enabled Li insertion/extraction to be tuned through the choice of voltage range in both components of this composite or in the anatase TiO2 phase only. The use of composite materials may facilitate the development of multi‐component electrodes where different active materials can be cycled in order to tune power output.  相似文献   

6.
The interaction of spores of Ulva with bioinspired structured surfaces in the nanometer–micrometer size range is investigated using a series of coatings with systematically varying morphology and chemistry, which allows separation of the contributions of morphology and surface chemistry to settlement (attachment) and adhesion strength. Structured surfaces are prepared by layer‐by‐layer spray‐coating deposition of polyelectrolytes. By changing the pH during application of oppositely charged poly(acrylic acid) and polyethylenimine polyelectrolytes, the surface structures are systematically varied, which allows the influence of morphology on the biological response to be determined. In order to discriminate morphological from chemical effects, surfaces are chemically modified with poly(ethylene glycol) and tridecafluoroctyltriethoxysilane. This chemical modification changes the water contact angles while the influence of the morphology is retained. The lowest level of settlement is observed for structures of the order 2 µm. All surfaces are characterized with respect to their wettability, chemical composition, and morphological properties by contact angle measurement, X‐ray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy.  相似文献   

7.
Ferroelectrics are important technological materials with wide‐ranging applications in electronics, communication, health, and energy. While lead‐based ferroelectrics have remained the predominant mainstay of industry for decades, environmentally friendly lead‐free alternatives are limited due to relatively low Curie temperatures (T C) and/or high cost in many cases. Efforts have been made to enhance T C through strain engineering, often involving energy‐intensive and expensive fabrication of thin epitaxial films on lattice‐mismatched substrates. Here, a relatively simple and scalable sol–gel synthesis route to fabricate polycrystalline (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 nanowires within porous templates is presented, with an observed enhancement of T C up to ≈300 °C as compared to ≈90 °C in the bulk. By combining experiments and theoretical calculations, this effect is attributed to the volume reduction in the template‐grown nanowires that modifies the balance between different structural instabilities. The results offer a cost‐effective solution‐based approach for strain‐tuning in a promising lead‐free ferroelectric system, thus widening their current applicability.  相似文献   

8.
9.
Recently a significant figure‐of‐merit (ZT) improvement in the most‐studied existing thermoelectric materials has been achieved by creating nanograins and nanostructures in the grains using the combination of high‐energy ball milling and a direct‐current‐induced hot‐press process. Thermoelectric transport measurements, coupled with microstructure studies and theoretical modeling, show that the ZT improvement is the result of low lattice thermal conductivity due to the increased phonon scattering by grain boundaries and structural defects. In this article, the synthesis process and the relationship between the microstructures and the thermoelectric properties of the nanostructured thermoelectric bulk materials with an enhanced ZT value are reviewed. It is expected that the nanostructured materials described here will be useful for a variety of applications such as waste heat recovery, solar energy conversion, and environmentally friendly refrigeration.  相似文献   

10.
It is challenging to develop new top‐down approaches to tailor particles into subnanometer size structures on a large scale to further reveal their structure‐dependent physicochemical properties. Here, we demonstrate a non‐conventional, electrochemical, 3D ion‐carving process to tailor particles into subscale flower‐like nanostructures at room temperature. The technology is based on the electrochemical insertion/extraction of lithium ions as a carving “knife” to carve the single‐crystalline particle precursor into higher‐order, flower‐like nanostructures with hexagonal nanopetals as the building units. Our study demonstrates that the morphology of the as‐carved, flower‐like nanostructures can be controlled by the electrochemical parameters, such as the current density and the number of cycles. Particularly interesting is that dramatically different magnetic properties can be achieved depending on the morphology through careful tuning by the electrochemical ion‐carving process. The as‐carved, flower‐like particles may find many important applications, including magnetic nanodevices. Our approach, in principle, is applicable to prepare various kinds of 3D‐structured materials with different compositions.  相似文献   

11.
12.
The thin‐film photovoltaic material Cu2ZnSnS4 (CZTS) has drawn worldwide attention in recent years due to its earth‐abundant, nontoxic element constitution, and remarkable photovoltaic performance. Although state‐of‐the‐art power conversion efficiency is achieved by hydrazine‐based methods, effort to fabricate such devices in a high throughput, environmental‐friendly way is still highlydesired. Here a hydrazine‐free all‐solution‐processed CZTS solar cell with Na2S self‐depleted back contact modification layer for the first time is demonstrated, using a ball‐milled CZTS as light absorber, low‐temperature solution‐processed ZnO electron‐transport layer as well as silver‐nanowire transparent electrode. The inserting of Na2S self‐depleted layer is proven to effectively stabilize the CZTS/Mo interface by eliminating a detrimental phase segregation reaction between CZTS and Mo‐coated soda lime glass, thus leading to a better crystallinity of CZTS light absorbing layer, enhanced carrier transportation at CZTS/Mo interface as well as a smaller series resistance. Furthermore, the self‐depletion feature of the Na2S modification layer also averts hole‐transportation barrier within the devices. The results show the vital importance of interfacial engineering for these CZST devices and the Na2S interface layer can be extended to other optoelectronic devices using Mo contact.  相似文献   

13.
Self‐assembled multidoped cryptomelane hollow microspheres with ultrafine particles in the size range of 4–6 nm, and with a very high surface area of 380 m2 g?1 have been synthesized. The particle size, morphology, and the surface area of these materials are readily controlled via multiple framework substitutions. The X‐ray diffraction and transmission electron microscopy (TEM) results indicate that the as‐synthesized multidoped OMS‐2 materials are pristine and crystalline, with no segregated metal oxide impurities. These results are corroborated by infrared (IR) and Raman spectroscopy data, which show no segregated amorphous and/or crystalline metal impurities. The field‐emission scanning electron microscopy (FESEM) studies confirm the homogeneous morphology consisting of microspheres that are hollow and constructed by the self‐assembly of pseudo‐flakes, whereas energy‐dispersive X‐ray (EDX) analyses imply that all four metal cations are incorporated into the OMS‐2 structure. On the other hand, thermogravimetric analyses (TGA) and differential scanning calorimetry (DSC) demonstrate that the as‐synthesized multidoped OMS‐2 hollow microspheres are more thermally unstable than their single‐doped and undoped counterparts. However, the in‐situ XRD studies show that the cryptomelane phase of the multidoped OMS‐2 hollow microspheres is stable up to about 450°C in air. The catalytic activity of these microspheres towards the oxidation of diphenylmethanol is excellent compared to that of undoped OMS‐2 materials.  相似文献   

14.
A new dicyanodistyrylbenzene‐based phasmidic molecule, (2Z,2′Z)‐2,2′‐(1,4‐phenylene)bis(3‐(3,4,5‐tris(dodecyloxy)phenyl)acrylonitrile), GDCS, is reported, which forms a hexagonal columnar liquid crystal (LC) phase at room temperature (RT). GDCS molecules self‐assemble into supramolecular disks consisting of a pair of molecules in a side‐by‐side disposition assisted by secondary bonding interactions of the lateral polar cyano group, which, in turn, constitute the hexagonal columnar LC structure. GDCS shows very intense green/yellow fluorescence in liquid/solid crystalline states, respectively, in contrast to the total absence of fluorescence emission in the isotropic melt state according to the characteristic aggregation‐induced enhanced emission (AIEE) behavior. The AIEE and two‐color luminescence thermochromism of GDCS are attributed to the peculiar intra‐ and intermolecular interactions of dipolar cyanostilbene units. It was found that the intramolecular planarization and restricted molecular motion associated with a specific stacking situation in the liquid/solid crystalline phases are responsible for the AIEE phenomenon. The origin of the two‐color luminescence was elucidated to be due to the interdisk stacking alteration in a given column driven by the specific local dipole coupling between molecular disks. These stacking changes, in turn, resulted in the different degree of excited‐state dimeric coupling to give different emission colors. To understand the complicated photophysical properties of GDCS, temperature‐dependent steady‐state and time‐resolved PL measurements have been comprehensively carried out. Uniaxially aligned and highly fluorescent LC and crystalline microwires of GDCS are fabricated by using the micromolding in capillaries (MIMIC) method. Significantly enhanced electrical conductivity (0.8 × 10?5 S?cm?1/3.9 × 10?5 S?cm?1) of the aligned LC/crystal microwires were obtained over that of multi‐domain LC sample, because of the almost perfect shear alignment of the LC material achieved in the MIMIC mold.  相似文献   

15.
Triplet–triplet annihilation (TTA) is studied in a wide range of fluorescent host:guest emitter systems used in organic light‐emitting devices (OLEDs). Strong TTA is observed in host:guest systems in which the dopant has a limited charge‐trapping capability. On the other hand, systems in which the dopant can efficiently trap charges show insignificant TTA, an effect that is due, in part, to the efficient quenching of triplet excitons by the trapped charges. Fluorescent host:guest systems with the strongest TTA are found to give the highest OLED electroluminescence efficiency, a phenomenon attributed to the role of TTA in converting triplet excitons into additional singlet excitons, thus appreciably contributing to the light output of OLEDs. The results shed light on and give direct evidence for the phenomena behind the recently reported very high efficiencies attainable in fluorescent host:guest OLEDs with quantum efficiencies exceeding the classical 25% theoretical limit.  相似文献   

16.
Triplet population dynamics of solution cast films of isolated polymorphs of 6,13‐bis(triisopropylsilylethynyl) pentacene (TIPS‐Pn) provide quantitative experimental evidence that triplet excitation energy transfer is the dominant mechanism for correlated triplet pair (CTP) separation during singlet fission. Variations in CTP separation rates are compared for polymorphs of TIPS‐Pn with their triplet diffusion characteristics that are controlled by their crystal structures. Since triplet energy transfer is a spin‐forbidden process requiring direct wavefunction overlap, simple calculations of electron and hole transfer integrals are used to predict how molecular packing arrangements would influence triplet transfer rates. The transfer integrals reveal how differences in the packing arrangements affect electronic interactions between pairs of TIPS‐Pn molecules, which are correlated with the relative rates of CTP separation in the polymorphs. These findings suggest that relatively simple computations in conjunction with measurements of molecular packing structures may be used as screening tools to predict a priori whether new types of singlet fission sensitizers have the potential to undergo fast separation of CTP states to form multiplied triplets.  相似文献   

17.
This work presents a design of sandwich MoO3/C hybrid nanostructure via calcination of the dodecylamine‐intercalated layered α‐MoO3, leading to the in situ production of the interlayered graphene layer. The sample with a high degree of graphitization of graphene layer and more interlayered void region exhibits the most outstanding energy storage performance. The obtained material is capable of delivering a high specific capacitance of 331 F g?1 at a current density of 1 A g?1 and retained 71% capacitance at 10 A g?1. In addition, nearly no discharge capacity decay between 1000 and 10 000 continuous charge–discharge cycles is observed at a high current density of 10 A g?1, indicating an excellent specific capacitance retention ability. The exceptional rate capability endows the electrode with a high energy density of 41.2 W h kg?1 and a high power density of 12.0 kW kg?1 simultaneously. The excellent performance is attributed to the sandwich hybrid nanostructure of MoO3/C with broad ion diffusion pathway, low charge‐transfer resistance, and robust structure at high current density for long‐time cycling. The present work provides an insight into the fabrication of novel electrode materials with both enhanced rate capability and cyclability for potential use in supercapacitor and other energy storage devices.  相似文献   

18.
19.
The introduction of mesoporosity in zeolites is often directly coupled to changes in their overall catalytic performance without the detailed assessment of other key functions required for the rational design of the catalytic process such as accessibility, adsorption, and transport. This study presents an integrated approach to study property–function relationships in hierarchical zeolites. Accordingly, desilication of the 1D ITQ‐4 zeolite in alkaline medium is applied to develop different degrees of mesoporosity. Along with porosity modification, significant changes in composition, structure, and acidity occur. Relationships are established between the physicochemical properties of the zeolites and their characteristics in the adsorption and elution of light hydrocarbons (C2 to C5, alkanes and alkenes) as well as in the catalytic activity in low‐density polyethylene (LDPE) pyrolysis. The recently introduced hierarchy factor can appropriately relate porosity changes to catalytic performance.  相似文献   

20.
Highly efficient lepidine‐based phosphorescent iridium(III) complexes with pentane‐2,4‐dione or triazolpyridine as ancillary ligands have been designed and prepared by a newly developed facile synthetic route. Fluorine atoms and trifluoromethyl groups have been introduced into the different positions of ligand, and their influence on the photophysical properties of complexes has been investigated in detail. All the triazolpyridine‐based complexes display the blueshifted dual‐peak emission compared to the pentane‐2,4‐dione‐based ones with a broad single‐peak emission. The complexes show emission with broad full width at half maximum (FWHM) over 100 nm, and the emissions are ranges from greenish–yellow to orange region with the absolute quantum efficiency (ΦPL) of 0.21–0.92 in solution, i.e., ΦPL = 0.92 ( 18 ), which is the highest value among the reported neutral yellow iridium(III) complexes. Furthermore, high‐performance yellow and complementary‐color‐based white organic light‐emitting diodes (OLEDs) have been fabricated. The FWHMs of the yellow, greenish–yellow OLEDs are in the range of 94–102 nm, which are among the highest values of the reported yellow or greenish–yellow‐emitting devices without excimer emission. The maximum external quantum efficiency of monochrome OLEDs can reach 24.1%, which is also the highest value among the reported yellow or greenish–yellow devices. The color rendering indexes of blue and complementary yellow‐based white OLED is as high as 78.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号