首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Si3N4 based composites with 7 wt.% of graphene nanoplatelets (GNPs) were prepared using different homogenization methods. Si3N4/GNPs powder mixtures were dispersed in isopropanol and homogenized by attritor milling, ball milling or planetary ball milling. The ball milling technique was also used for the homogenization of Si3N4/GNPs mixture in dry state. Fractography analysis was carried out in order to assess the individual homogenization treatment. Depending on the homogenization methods, the size of the processing flaws varied from 20 μm up to 400 μm. The agglomeration of the GNPs and the residual porosity were found as the most frequently observed types of the critical flaws. The planetary ball milling with previous ultrasonication of GNPs in isopropanol was found to be the most promising homogenization technique, resulting in the composites with the highest bending strength (average value is 740 MPa) and the lowest average size of the processing flaws (around 20 μm).  相似文献   

2.
Two types of Si3N4 composites containing graphene nanostructures using two different graphene sources, pristine graphene nanoplatelets and graphene oxide layers were produced by Spark Plasma Sintering. The maximum toughness of 10.4 MPa m1/2, measured by flexure testing of pre-cracked bars, was achieved for a composite (∼60β/40α-Si3N4, ∼300 nm grain size) with 4 vol.% of reduced graphene oxide, indicating a toughening enhancement of 135% when compared to a similar Si3N4. This was also accompanied by a 10% increase in flexure strength (1040 MPa). For the composites with thicker graphene nanoplateletes only a 40% of toughness increase (6.6 MPa m1/2) without strength improvement was observed for the same filler content. The large difference in the maximum toughness values accomplished for both types of composites was attributed to variations in the graphene/Si3N4 interface characteristics and the extent of monolayer graphene exfoliation.  相似文献   

3.
4.
Fully dense Si3N4 materials with 1 wt.% (~ 1.5 vol.%) and 2 wt.% (~ 3.0 vol.%) h-BN nanosheets were prepared by spark plasma sintering at 1750 °C with the dwell of 7 min under a pressure of 50 MPa in a vacuum. BN nanosheets with different dimensions were prepared by ultrasound-assisted liquid phase exfoliation of h-BN powder, followed by centrifugation at different speeds (1000 rpm and 3000 rpm). The addition of BN nanosheets hindered the particle rearrangement stage of sintering, which resulted in the delayed α→β phase transformation of Si3N4. To study a direct effect of BN nanosheets on the mechanical properties of Si3N4, the results were compared to the monolithic Si3N4 with similar grain size and α/β-Si3N4 ratio. The addition of 2 wt.% h-BN nanosheets (1000 rpm) increased both the fracture toughness (~ 26 %) and the strength (~ 45 %) of Si3N4, when compared to the monolithic Si3N4 with similar microstructure.  相似文献   

5.
Silicon nitride + 1 wt% graphene platelet composites were prepared using various graphene platelets (GPLs) as filler. The influence of the addition of GPLs on the microstructure development and on the fracture toughness of Si3N4 + GPLs composites was investigated. The GPLs with thickness from 5 nm to 50 nm are relatively homogeneously distributed in the matrix of all composites, however overlapping/bundle formation of GPLs was found, containing 2–4 platelets as well. The single GPLs and overlapped GPLs are located at the boundaries of Si3N4, and hinder the grain growth and change the shape of the grains. The fracture toughness was significantly higher for all composites in comparison to the monolithic Si3N4 with the highest value of 9.9 MPa m0.5 for the composite containing the GPLs with smallest dimension. The main toughening mechanisms originated from the presence of graphene platelets, and responsible for the increase in the fracture toughness values are crack deflection, crack branching and crack bridging.  相似文献   

6.
《Ceramics International》2017,43(15):11743-11752
Yttria tetragonal zirconia ceramic composites with 1, 2.5, 5 and 10 vol% nominal contents of graphene nanoplatelets (GNPs) were fabricated and characterized. First, the GNP dispersion in isopropanol was optimized to de-agglomerate the GNPs without damaging their structure. Then, submicrometric fully dense composites were obtained via spark plasma sintering (SPS) at 1250 °C with a 5 min holding time. The processing routine produced a nearly homogeneous GNP dispersion in the ceramic matrix, and the GNPs preferential orientation was perpendicular to the sintering compression axis. A ceramic grain refinement due to the GNPs was also detected. The Vickers hardness measured on the plane perpendicular to the sintering compression axis (basal plane) was lower than on the cross sections. This anisotropy increased with the increasing GNP content, while the average hardness decreased. The electrical conductivity was also highly anisotropic, up to seven times higher for the basal planes. The electrical percolation threshold for these composites was estimated to be between 2.2 and 4.4 vol% of the GNP measured content.  相似文献   

7.
Silicon nitride + 1 wt% graphene platelet composites were prepared using various graphene platelets (GPL) and two processing routes; hot isostatic pressing (HIP) and gas pressure sintering (GPS). The influence of the processing route and graphene platelets’ addition on the fracture toughness has been investigated. The matrix of the composites prepared by GPS consists of Si3N4 grains with smaller diameter in comparison to the composites prepared by HIP. The indentation fracture toughness of the composites was in the range 6.1–9.9 MPa m0.5, which is significantly higher compared to the monolithic silicon nitride 6.5 and 6.3 MPa m0.5. The highest value of KIC was 9.9 MPa m0.5 in the case of composite reinforced by the smallest multilayer graphene nanosheets, prepared by HIP. The composites prepared by GPS exhibit lower fracture toughness, from 6.1 to 8.5 MPa m0.5. The toughening mechanisms were similar in all composites in the form of crack deflection, crack branching and crack bridging.  相似文献   

8.
Aluminum nitride (AlN) is the material of choice for high power modulus substrates. The thermal and electrical conductions can be also fostered by adding CaF2 and carbon particles, respectively. Moreover, additives (Y2O3) have to be used as sintering aids to achieve full densification. In this paper, we report on tuning the electrical conduction within AlN-based composites developed by incorporating graphene nanoplatelets GNP, obtained from graphite exfoliation, in the AlN-based ceramics comprising Y2O3 and CaF2. These composites were prepared by Spark Plasma Sintering through a new configuration called “multiple preparation” with a view to fabricating three samples per cycle, revealing time and energy savings. An increase of the electrical conductivity by 10 orders of magnitude was obtained for these composites compared to the commercial AlN by adjusting the amount of GNP and the way of exfoliation. This work promotes the development of novel multifunctional ceramic composites for Power Electronics applications.  相似文献   

9.
The tribological behavior of graphene nanoplatelet (GNP) reinforced 3 mol% yttria tetragonal zirconia polycrystals (3YTZP) composites with different GNP content (2.5, 5 and 10 vol%) was analyzed and discussed. Their dry sliding behavior was studied using a ball-on-disk geometry with zirconia balls as counterparts, using loads between 2 and 20 N at ambient conditions and compared to the behavior of a monolithic 3YTZP ceramic used as a reference material. The composites showed lower friction coefficients and higher wear resistance than the monolithic 3YTZP. An outstanding performance was achieved at 10 N, where the friction coefficient decreased from 0.6 to 0.3 and the wear rates decreased 3 orders of magnitude in comparison with the monolithic ceramic. A layer adhered to the worn surface was found for all the composites, but it did not acted as a lubricating film. The composites with the lowest GNP content showed an overall improved tribological behavior.  相似文献   

10.
This paper reports on anisotropy of functional properties of different silicon carbide-graphene composites due to preferential orientation of graphene layers during sintering. Dense silicon carbide/graphene nanoplatelets (SiC/GNPs) and silicon carbide/graphene oxide (SiC/GO) composites were sintered in the presence of yttria (Y2O3) and alumina (Al2O3) sintering additives at 1800 °C in vacuum by the rapid hot pressing (RHP) technique. It is found that electrical conductivity of SiC/GNPs and SiC/GO composites increases significantly in the perpendicular direction to the RHP pressing axis, reached up to 1775 S/m in the case of SiC/GO (for 3.15 wt.% of rGO). Also, thermal diffusivity was found to increase slightly by the addition of GNPs in the SiC/GNPs composites in the perpendicular direction to the RHP pressing axis. But, in the parallel direction, the addition of GNPs showed a negative effect. The formation of graphene domains was observed in reference sample SiC-Y2O3-Al2O3 sintered by RHP, without any addition of graphene. Their presence was confirmed indirectly by increasing electrical conductivity about three orders of magnitude in comparison to the reference sample sintered by conventional hot press (HP). Raman, SEM and TEM analysis were used for direct evidence of presence of graphene domains in RHP reference sample.  相似文献   

11.
We reported an oscillatory pressure sintering (OPS) process to consolidate Si3N4-SiCw composites. For comparison, the composites were also prepared by hot pressing (HP) method. The specimen by OPS process reveals an accelerated rate of grain growth in the c axial direction and thus an increased average aspect ratio compared with the specimen by HP process. The oscillatory pressure also performs a positive impact on the Si3N4-SiCw composites as the bulk density of the OPS specimen increases to 3.270?g?cm?3 accompanied with higher fracture strength and hardness of 1133?MPa and 16.1?GPa, respectively, compared with those of the HP specimen. Significantly, the increased fracture toughness and Weibull modulus found in the OPS specimen indicate toughening effects and material reliability are improved aided by the oscillatory pressure. Current results suggest OPS to be a promising technique for preparing highly densified Si3N4-SiCw composites with enhanced mechanical properties.  相似文献   

12.
The short-crack domain and contact damage resistances of silicon carbide (SiC) ceramics containing graphene fillers (graphene nanoplatelets -GNPs- or reduced graphene oxide sheets -rGOs) are investigated by performing Hertzian contact tests. A progressive deviation from the linear Hertzian elastic response with increasing graphene content takes place, the composite containing 20 vol.% GNPs being the most deformable material. When adding increasing amounts of GNPs, the damage beneath the contact zone turns from well-defined cone cracks of monolithic SiC to a widespread subsurface damage where microcracks are generated due to the matrix/graphene interface debonding by a shear faulting process. This mechanism enhances the contact damage resistance of the composites, redistributing the stresses at the contact and limiting the long-crack formation. The composite containing 5 vol.% rGOs fully precludes the cone cracks development and enlarges the quasi-plastic damage zone, extraordinarily enhancing the contact damage resistance that approaches to that of a ductile material.  相似文献   

13.
In this morphological study the dispersion and localization behavior of 1 wt.% graphene nanoplatelets (GnPs) in melt mixed co-continuous polymer blends of polycarbonate (PC, 59 wt.%) and poly(styrene-acrylonitrile) (SAN, 40 wt.%) were investigated. Through varying the mixing sequence as well as the melt mixing parameters, different states of dispersion and different filler localizations were achieved. Melt mixing in a one-step process resulted in the poorest dispersion of the GnPs in the polymer blend. In this case, the filler could hardly be found localized selectively in one of the polymer components but formed its own component. In two-step mixing processes the GnPs were either premixed in PC or SAN to investigate the assumed filler transfer from the SAN into the PC component. Four different premixtures were prepared which showed that longer mixing time and higher rotation speed resulted in better dispersion of the GnPs in the polymer matrix. If the GnPs were predispersed in PC they could still be found in the PC component after blending with SAN. In the case that the GnPs were premixed in SAN, the filler was detected partially in the SAN or at the blend interface, as well as smaller sized particles were found in the PC component. It could be shown that the size and aspect ratio of the filler play a significant role on the localization of GnPs in melt mixed polymer blends.  相似文献   

14.
Silicon nitride ceramics with high thermal conductivity were fabricated by employing the reaction bonding method. It was revealed that the addition of Si3N4 diluents affected both the nitriding reaction and the post-sintering behavior by changing the size of the silicon particle during the milling process. The reduced size of silicon particle led to an increased degree of nitridation. Further, narrower pore channels in the nitrided bodies caused by the reduced size of silicon particle enhanced the final density, by promoting the easier elimination of finer pores during post-sintering. The positive effect of the finer silicon particle was confirmed by a back-up experiment employing a variety of silicon particle sizes, produced by milling the raw silicon powder for different milling times. Thermal conductivity was dominated by material density rather than variation of the microstructure or oxygen content in the current research.  相似文献   

15.
《Ceramics International》2016,42(15):16448-16452
The formation mechanism and thermodynamics of Si3N4 in reaction-bonded Si3N4-SiC materials were analyzed. There are two kinds of Si3N4, fibroid α-Si3N4 and columnar β-Si3N4, which are formed by different processes in Si3N4-SiC materials. Silicon reacts with oxygen, forming gaseous SiO and reducing oxygen partial pressure. SiO(g) diffuses from central to peripheral sections of blocks and reacts with nitrogen, thus forming Si3N4, mainly in peripheral sections. The reaction between silicon and oxygen causes the consumption of oxygen and leads to low oxygen partial pressure in the sintering system, which allows silicon to react with nitrogen directly generating Si3N4in situ. SiO(g) reacts with nitrogen forming Si3N4 at both central and peripheral sections of block. The non-uniform distribution of Si3N4 and uneven microstructure is caused by the generation process, indicating that it is unavoidable in Si3N4-SiC composites.  相似文献   

16.
通过对氮化硅,石英复合材料体系的研究,探讨了氮化硅含量对材料性能及其物相组成的影响;在该体系中引入氮化硼后,复合材料的强度和抗热震性能得到提高。  相似文献   

17.
Porous silicon nitride ceramics were prepared via sintered reaction bonded silicon nitride at 1680 °C. The grain size of nitrided Si3N4 and diameter of post-sintered β-Si3N4 are controlled by size of raw Si. Porosity of 42.14–46.54% and flexural strength from 141 MPa to 165 MPa were obtained. During post-sintering with nano Y2O3 as sintering additive, nano Y2O3 can promote the formation of small β-Si3N4 nuclei, but the large amount of β-Si3N4 (>20%) after nitridation also works as nuclei site for precipitation, in consequence the growth of fine β-Si3N4 grains is restrained, the length is shortened, and the improvement on flexural strength is minimized. The effect of nano SiC on the refinement of the β-Si3N4 grains is notable because of the pinning effect, while the effect of nano C on the refinement of the β-Si3N4 grains is not remarkable due to the carbothermal reaction and increase in viscosity of the liquid phase.  相似文献   

18.
赵洋  成来飞  徐永东  陈超 《耐火材料》2007,41(3):197-200
以粒度均≤0.044mm的工业Si粉和α-SiC粉为原料,酚醛树脂为结合剂(占总粉末质量的6.5%),配成SiC含量(质量分数)分别为10%、30%、50%和70%的4组试样,经200MPa冷等静压成型后,在N2气氛中(压力为1.25MPa)于1395℃反应烧结制备了SiC-Si3N4复合材料,并采用SEM、XRD和EDS等测试手段对试样进行了观察和测试。结果表明:随着粉料中SiC含量的增加,烧后试样的体积密度下降,显气孔率提高,抗折强度降低,以SiC加入量为10%的试样性能最优;4组试样经800℃~室温空冷热震15次后的抗折强度保持率均在90%以上,表明材料具有良好的抗热震性能。  相似文献   

19.
《Ceramics International》2017,43(18):16773-16779
Silicon nitride (Si3N4) was synthesized under a nitrogen gas flow (100 mL/min) using a molten salt nitriding method to investigate the effects of the temperature and NaCl content on the α-Si3N4 content in products and their micro-morphologies. Adding NaCl and β-Si3N4 in silicon powders resulted in Si nitridation products divided into two layers. Analysis of the lower product using X-ray diffraction revealed a change in the α-Si3N4 content with changes in the temperature and NaCl content. Analysis of the lower and upper layers using scanning electron microscopy revealed that the upper layer contained Si3N4 nanowires, Si3N4 nanobelts, and clastic oxide impurities; the lower one contained short needle-like and blocky Si3N4. From the microstructures of the products, the product morphology related to that the dry mixing procedure did not correspond to homogenization of the starting Si-Si3N4-NaCl mixtures and the different concentrations of raw materials resulted in different morphologies.  相似文献   

20.
Boron carbide/graphene platelet (B4C/GPLs) composites have been prepared with a different weight percent of GPLs as sintering additive and reinforcing phase, hot pressed at 2100 °C in argon. The influence of the GPLs addition on fracture toughness (KIC) and electrical conductivity was investigated. Single Edge V-Notched Beam (SEVNB) method was used for fracture toughness measurements and the four-point Van der Pauw method for electrical conductivity measurements. With increasing amount of GPLs additives, the fracture toughness increased due to the activated toughening mechanisms in the form of crack deflection, crack bridging, crack branching and graphene sheet pull-out. The highest fracture toughness of 4.48 MPa.m1/2 was achieved at 10 wt.% of GPLs addition, which was ∼50% higher than the KIC value of the reference material. The electrical conductivity increased with GPLs addition and reached the maximum value at 8 wt.% of GPLs, 1.526 × 103 S/m in the perpendicular and 8.72 × 102 S/m in the parallel direction to the hot press direction, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号