首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A series of poly(vinyl pyrrolidone‐co‐octavinyl polyhedral oligomeric silsesquioxanes) (PVP‐POSS) organic–inorganic hybrid nanocomposites containing different percentages of POSS were prepared via free radical polymerization and characterized by FTIR, high‐resolution 1H‐NMR, solid‐state 29Si‐NMR, GPC, DSC, and TGA. POSS contents in these nanocomposites can be effectively controlled by varying the POSS feed ratios which can be accurately quantified by FTIR curve calibration. On the basis of 29Si‐NMR spectra, average numbers of reacted vinyl groups of each octavinyl‐POSS macromer are calculated to be 5–7, which depends on POSS feed ratios. Both GPC and DSC results indicate that these nanocomposites display network structure and the degree of crosslinking increases with the increase of the POSS content. The incorporation of POSS into PVP significantly improves their thermal properties (Tg and Tdec) primarily due to crosslinking structure and dipole–dipole interaction between POSS cores and PVP carbonyl groups. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
A novel polyhedral oligomeric silsesquioxane (POSS) containing a mercaptopropyl group [mercaptopropyl polyhedral oligomeric silsesquioxane (MPOSS)] was synthesized via the hydrolytic condensation of γ-mercaptopropyl triethoxysilane in an ethanol solution catalyzed by concentrated hydrochloric acid and was used to modify epoxy–amine networks by a cocuring reaction with diglycidyl ether of bisphenol A (DGEBA). The structure, morphology, and thermal and mechanical properties of these MPOSS/DGEBA epoxy nanocomposites were studied and investigated with thermogravimetric analysis/differential thermal analysis (TGA–DTA), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). From SEM analysis, we observed that the miscibility between epoxy and POSS occurred at a relatively high POSS content, which characterized this mixture as a polymer nanocomposite system. The impact test showed that MPOSS reinforced the epoxy effectively, and the SEM study of the impact fracture surface showed that the fibrous yielding phenomenon observed was an indication of the transition of the brittle stage to a ductile stage and correlated well with the large increases in the impact strength; this was in agreement with the in situ reinforcing and toughening mechanism. The TGA–DTA analysis indicated that the MPOSS/DGEBA epoxy hybrids exhibited lower thermostability at a lower temperature but higher thermostability and higher efficiency in char formation at an elevated temperature. Differential scanning calorimetry showed that the glass transition temperature (Tg) of the MPOSS/epoxy hybrids were lower than that of the neat epoxy. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
Allylated novolac/4,4′‐bismaleimidodiphenylmethane resin (AN/BDM) had been modified with well‐defined inorganic building blocks‐polyhedral oligomeric silsesquioxane (POSS). Octamaleimidophenyl polyhedral silsesquioxane (OMPS) was used as the cocuring reagent of the AN/BDM resin to prepare POSS‐modified AN/BDM resin, and POSS content was between 0 and 17.8 wt %. The curing reaction of the POSS‐modified AN/BDM resin was monitored by means of Fourier transform infrared spectroscopy (FTIR), and the results revealed that maleimide groups on OMPS molecule could undergothe curing reaction between allyl groups and maleimide groups. Therefore, the crosslinked network containing POSS was formed. Scanning electron microscopy (SEM) and X‐ray diffraction (XRD) were employed to study the morphology of the cured POSS‐modified AN/BDM resins. The homogeneous dispersion of POSS cages in AN/BDM matrices was evidenced. Thermogravimetric analysis (TGA) indicated that incorporation of POSS into AN/BDM crosslinked network led to enhanced thermal stability. The improved thermal stability could be ascribed to higher crosslink density and inorganic nature of POSS. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3903–3908, 2007  相似文献   

4.
The poly(styrene‐co‐octavinyl‐polyhedral oligomeric silsesquioxane) (PS–POSS) organic–inorganic hybrid nanocomposites containing various percent of POSS were prepared via one‐step free radical polymerization and characterized by FTIR, high‐resolution 1H NMR, 29Si NMR, GPC, DSC, and TGA technologies. The POSS contents in these nanocomposites were determined using FTIR calibration curve. The result shows that the POSS contents in nanocomposites can be tailored by varying the POSS feed ratios. On the basis of the POSS contents in the nanocomposites and the 1H NMR spectra, the number of reacted vinyl groups of each octavinyl‐POSS macromonomer were calculated to be 6–8. DSC and TGA measurements indicate that the incorporation of POSS into PS homopolymer can apparently improve the thermal properties of the polymeric materials. The dramatic Tg and Tdec increases are mainly due to the formation of star and low cross‐linking structure of the nanocomposites, where POSS cores behave as the joint points and hinder the motion and degradation of the polymeric chains. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

5.
Polypropylene (PP)/octavinyl polyhedral oligomeric silsesquioxane (OvPOSS) composites were prepared by physical blending or reactive blending methods. The comparison of the PP/OvPOSS composites prepared by these two methods was investigated by mechanical tests, thermogravimetric analysis, and cone calorimeter. The graft ratio of OvPOSS to PP chain increased with increasing OvPOSS and dicumyl peroxide content for the reactive blending composites. The reactive blending composites had better mechanical properties, thermal stability than physical blending composites. The peak of the heat release rate and mass loss rate of PP/OvPOSS had also decreased, indicating better flame retardancy of PP/OvPOSS composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
为了提高环氧树脂的耐热性,采用笼型倍半硅氧烷(POSS)改性双酚A型环氧树脂E51,得到有机无机杂化树脂。采用Ozawa和Kissinger两种方法研究了杂化树脂/4,4′-二氨基苯砜(DDS)体系的固化反应动力学。TGA分析表明,POSS的加入提高了E51/DDS固化树脂体系的热性能。  相似文献   

7.
The synthesis and properties of novel hybrid silsesquioxane‐containing urethane polymers using octakis(hydroxypropyldimethylsiloxy)octasilsesquioxane (OHPOSS) as a crosslinker and a hydroxyl‐terminated polybutadiene were studied. Mixing of the OHPOSS with polyurethane prepolymer and chain extenders in solution was found to be successful when tetrahydrofuran was used as the solvent. Thin films of hybrid polyurethanes were obtained. The hybrid materials were elastomers with improved water and solvent resistivity and good thermal stability. The studied OHPOSS appeared to be an effective crosslinker of polyurethanes suitable for, for example, surface coatings applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2023–2030, 2013  相似文献   

8.
A series of functional polyhedral oligomeric silsesquioxane (POSS)/polyimide (PI) nanocomposites were prepared using a two‐step approach. First, octa(aminophenyl)silsesquioxane (OAPS) was mixed with poly(amic acid) (PAA) prepared by reacting bis(4‐amino‐3,5‐dimethylphenyl)‐3‐quinolylmethane and 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride. Second, the resulting solution was subjected to thermal imidization. The well‐defined ‘hard particles’ (POSS) and the strong covalent bonds in the amide linkage between the carbon atom of the carboxyl side group in PAA and the nitrogen atom of the amino group in POSS lead to a significant improvement in the thermal and mechanical properties. Homogeneous dispersion of POSS cages in the PI is evident from scanning electron microscopy, which further confirms that the POSS molecule becomes an integral part of the organic‐inorganic inter‐crosslinked network system. Differential scanning calorimetry and dynamic mechanical analysis show that the glass transition temperatures of the POSS‐containing nanocomposites are higher than that of the corresponding neat PI system, owing to the significant increase of the crosslinking density in the PI/POSS nanocomposites. Increasing the concentration of OAPS in the PI networks decreases the dielectric constant. Pure PI and PI/POSS systems have good antimicrobial activity. Copyright © 2011 Society of Chemical Industry  相似文献   

9.
Yuan-Jyh Lee 《Polymer》2004,45(18):6321-6331
We have successfully synthesized a novel benzoxazine ring-containing polyhedral oligomeric silsesquioxane (BZ-POSS) monomer by two routes: (1) hydrosilylation of a vinyl-terminated benzoxazine using the hydro-silane functional group of a polyhedral oligomeric silsesquioxane (H-POSS) and (2) reaction of a primary amine-containng POSS (Amine-POSS) with phenol and formaldehyde. The benzoxazine-containing POSS (BZ-POSS) monomer can be copolymerized with other benzoxazine monomers through ring-opening polymerization under conditions similar to that used for polymerizing pure benzoxazines. Thermal properties of these POSS-containing organic/inorganic polybenzoxazine nanocomposites have been improved over the pure polybenzoxazine analyzed by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The BZ-POSS monomer is poorly miscible with the benzoxazine monomer and tends to aggregate and forms its own domains, both before and after polymerization. At a higher BZ-POSS content, gross aggregation occurs and results in a lower than expected improvement in the thermal properties.  相似文献   

10.
Composites of ultrafine polyhedral oligomeric octaphenyl silsesquioxane (OPS) and polycarbonate (PC) were prepared by melt blending. The mechanical and thermal properties of the composites were characterized by tensile and flexural tests, impact test, differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA), and thermal gravimetric analysis (TGA). Rheological properties of these melts were tested by torque rheometer. The flame retardancy of the composites was tested by limiting oxygen index (LOI), the vertical burning (UL‐94), and cone calorimeter test. The char residue was characterized by scanning electron microscope (SEM) and ATR‐FTIR spectrum. Furthermore, the dispersion of OPS particles in the PC matrix was evidenced by SEM. The results indicate that the glass transition temperatures (Tg) and torque of the composites decrease with increasing OPS loading. The onset decomposition temperatures of composites are lower than that of PC. The LOI value and UL‐94 rating of the PC/OPS composites increase with increasing loading of OPS. When OPS loading reaches 6 wt %, the LOI value is 33.8%, UL‐94 (1.6 mm) V‐0 rating is obtained, and peak heat release rate (PHRR) decreases from 570 to 292 kJ m?2. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
笼型倍半硅氧烷改性UPR的固化性能与热性能   总被引:4,自引:2,他引:2  
采用示差扫描量热仪(DSC),热重分析仪(TGA)及动态力学分析仪(DMA)研究了甲基丙烯酰氧丙基笼型倍半硅氧烷(MAP-POSS)与一缩二乙二醇型UPR、苯乙烯的等温共固化反应及动力学,测试了固化物的热性能和动态力学性能。结果表明,固化过程符合自催化反应机理,当体系中MAP-POSS质量分数为5%时,5%热失重温度和残留量5%时的温度较未加体系分别提高7℃和31℃,玻璃化转变温度降低4.2℃,热降解动力学符合1级反应。  相似文献   

12.
A series of cyanate ester resin (CE) based organic–inorganic hybrids containing different contents (0, 5, 10, 15 and 20 wt%) of epoxy‐functionalized polyhedral oligomeric silsesquioxane (POSS‐Ep) were prepared by casting and curing. The hybrid resin systems were studied by the gel time test to evaluate the effect of POSS‐Ep on the curing reactivity of CE. The impact and flexural strengths of the hybrids were investigated. The micromorphological, dynamic mechanical and thermal properties of the hybrids were studied by SEM, dynamic mechanical analysis (DMA) and TGA, respectively. Results showed that POSS‐Ep prolonged the gel time of CE. CE10 containing 10 wt% POSS‐Ep displayed not only the optimum impact strength but the optimum flexural strength. SEM results revealed that the improvement of mechanical properties was attributed to the large amount of tough whirls and fiber‐like pull‐outs observed on the fracture surfaces of CE10. DMA results indicated that POSS‐CE tended to decrease E′ of the hybrids in the glassy state but to increase E′ of the hybrids in the rubbery state. TGA results showed that CE10 also possesses the best thermal stability. The initial temperature of decomposition (Ti) of CE10 is 426 °C, 44 °C higher than that of pristine CE. © 2013 Society of Chemical Industry  相似文献   

13.
POSS/CE杂化复合材料的制备与介电性能研究   总被引:1,自引:0,他引:1  
为制备介电常数(ε)低、介电损耗因子(tanδ)小的集成电路板用树脂基体,以笼型倍半硅氧烷(POSS)对双酚A型氰酸酯(CE)树脂进行改性,制备出一种POSS/CE无机-有机杂化复合材料。着重探讨了POSS用量和后处理工艺等对POSS/CE树脂体系介电性能的影响。结果表明:当w(POSS)=2%(相对于CE单体质量而言)、后处理工艺为240℃/3 h时,改性体系的介电性能相对最好,其测试频率为60 MHz时的ε(为2.9)和tanδ(为0.004 5)分别比纯CE树脂降低了9.4%和35.7%;该改性体系的表观活化能为51.9 kJ/mol。  相似文献   

14.
A series of poly(methyl methacrylate) (PMMA)/octavinyl polyhedral oligomeric silsesquioxane (POSS) blends were prepared by the solution‐blending method and characterized with Fourier transform infrared, X‐ray diffraction, transmission electron microscopy, differential scanning calorimetry, and thermogravimetric analysis techniques. The glass‐transition temperature (Tg) of the PMMA–POSS blends showed a tendency of first increasing and then decreasing with an increase in the POSS content. The maximum Tg reached 137.2°C when 0.84 mol % POSS was blended into the hybrid system, which was 28.2°C higher than that of the mother PMMA. The X‐ray diffraction patterns, transmission electron microscopy micrographs, and Fourier transform infrared spectra were employed to investigate the structure–property relationship of these hybrid nanocomposites and the Tg enhancement mechanism. The results showed that at a relatively low POSS content, POSS as an inert diluent decreased the interaction between the dipolar carbonyl groups of the homopolymer molecular chains. However, a new stronger dipole–dipole interaction between the POSS and the carbonyl of PMMA species formed at the same time, and a hindrance effect of nanosize POSS on the motion of the PMMA molecular chain may have played the main role in the Tg increase of the hybrid nanocomposites. At relatively high POSS concentrations, the strong dipole–dipole interactions that formed between the POSS and carbonyl groups of the PMMA gradually decreased because of the strong aggregation of POSS. This may be the main reason for the resultant Tg decrease in these hybrid nanocomposites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
3,13-Diglycidyloxypropyloctaphenyl double-decker silsesquioxane (EP-DDSQ) was synthesized by process of alkaline hydrolysis condensation of phenyltrimethoxysilane and corner capping reaction of methyldichlorosilane, followed by hydrosilylation with allyl glycidyl ether, and the resultant structure was confirmed by fourier transform infrared spectrometer (FTIR) and nuclear magnetic resonance (NMR), respectively. The thermosetting phenol-formaldehyde (PF) resin was then modified by EP-DDSQ, and the reactivity of PF resin with EP-DDSQ and thermal pyrolysis of modified cured resin were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The surface morphologies of modified resins at high temperature were characterized with field emission scanning electron microscope (FESEM), and chemical structure of modified resins was analyzed through X-ray photoelectron spectrometer (XPS). The results showed that the appropriate addition of EP-DDSQ did not affect the curing temperature of the PF resin itself, but could improve the heat resistance of the system. When the amount of EP-DDSQ added was 10%, the initial degradation temperature of PF resin was increased by 49.31°C, and when the amount of EP-DDSQ added was 16%, the char yield of which was reached up to 61.39%, compared with that of pure PF resin (TGA1,000°C of 57.62%) at Ar atmosphere. More importantly, the modified resin formed a regular and dense layer of SiC and SiOx ceramic on the surface after ablation in the muffle furnace at 800°C air atmosphere, which is very important for ablative resistant materials.  相似文献   

16.
In this study, the effect of maleic anhydride grafted styrene‐ethylene‐butylene‐styrene (SEBS‐g‐MA) content on mechanical, thermal, and morphological properties of polyethylene terephthalate/polycarbonate/halloysite nanotubes (PET/PC/HNTs) nanocomposites has been investigated. Nanocomposites of PET/PC (70 : 30) with 2 phr of HNTs were compounded using the counter rotating twin screw extruder. A series of formulations were prepared by adding 5–20 phr SEBS‐g‐MA to the composites. Incorporation of 5 phr SEBS‐g‐MA into the nanocomposites resulted in the highest tensile and flexural strength. Maximum improvement in the impact strength which is 245% was achieved at 10 phr SEBS‐g‐MA content. The elongation at break increased proportionately with the SEBS‐g‐MA content. However, the tensile and flexural moduli decreased with increasing SEBS‐g‐MA content. Scanning electron microscopy revealed a transition from a brittle fracture to ductile fracture morphology with increasing amount of SEBS‐g‐MA. Transmission electron microscopy showed that the addition of SEBS‐g‐MA into the nanocomposites promoted a better dispersion of HNTs in the matrix. A single glass transition temperature was observed from the differential scanning calorimetry test for compatibilized nanocomposites. Thermogravimetric analysis of PET/PC/HNTs nanocomposites showed high thermal stability at 15 phr SEBS‐g‐MA content. However, on further addition of SEBS‐g‐MA up to 20 phr, thermal stability of the nanocomposites decreased due to the excess amount of SEBS‐g‐MA. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42608.  相似文献   

17.
A phosphorus‐ and nitrogen‐containing compound (2‐dimethylamino ethyl phenyl hydroxyethyl acrylate phosphate) and its oligomer (poly(2‐dimethylamino ethyl phenyl hydroxyethyl acrylate phosphate), PDPHP) were synthesized and characterized. The polystyrene (PS) composites with various amounts of PDPHP were prepared by melt blending. The thermal stability of the PDPHP and PS composites was investigated by thermogravimetric analysis. The flame retardancy of the composites was evaluated using microscale combustion calorimeter and limiting oxygen index test. A Fourier transform infrared (FTIR) spectroscopy coupled with a thermogravimetric analyzer was also used to study the gas phase from the degradation of PS composites. The char residues of the PS composites containing 30 wt % PDPHP were analyzed by FTIR and scanning electron microscopy. The results suggest that the incorporation of PDPHP into PS can evidently enhance the char formation and improve the flame retardancy of virgin PS. The compact and coherent char formed during degradation was attributed to the enhancement of char quality and flame retardance. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
Research into organic–inorganic nanocomposites has recently become popular, particularly the development of new polymer nanocomposites. Compared to pristine polymers or conventional composites, these nanocomposites exhibit improved properties. The storage modulus of a poly(vinyl chloride) (PVC)/polyhedral oligomeric silsesquioxane (POSS) nanocomposite slightly decreased with POSS content, but had a higher modulus from 50 to 100 °C. Some of the material appeared to be aggregated with 1 wt% POSS in the polymeric matrix. Conversely, with a POSS content of 5 wt%, a better dispersion of the nanoparticles was observed. The presence of POSS in the plasticised PVC compound had little influence on the final properties of the nanocomposites, showing weaker interactions between the POSS and the plasticised PVC compound. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
Bio‐based calcium carbonate nanoparticles (CaCO3) were synthesized via size reduction of eggshell powder using mechanical attrition followed by high intensity ultrasonic irradiation. The transmission electron microscopic (TEM) and BET surface area measurements show that these particles are less than 10 nm in size and a surface area of ~44 m2/g. Bio‐based nanocomposites were fabricated by infusion of different weight fractions of as‐prepared CaCO3 nanoparticles into Polylite® 31325‐00 resin system using a non‐contact Thinky® mixing method. As‐prepared bio‐nanocomposites were characterized for their thermal and mechanical properties. TEM studies showed that the particles were well dispersed over the entire volume of the matrix. Thermal analyses indicated that the bio‐nanocomposites are thermally more stable than the corresponding neat systems. Nanocomposite with 2% by weight loading of bio‐CaCO3 nanoparticles exhibited an 18°C increase in the glass transition temperature over the neat Polylite 31325 system. Mechanical tests have been carried out for both bio‐nanocomposites and neat resin systems. The compression test results of the 2% Bio‐CaCO3/Polylite 31325 nanocomposite showed an improvement of 14% and 27% in compressive strength and modulus respectively compared with the neat system. Details of the fabrication procedure and thermal and mechanical characterizations are presented in this article. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1442–1452, 2013  相似文献   

20.
Poly(ε‐caprolactone)/clay nanocomposites were synthesized by in situ ring‐opening polymerization of ε‐caprolactone in the presence of montmorillonite modified by hydroxyl functionalized, quaternized polyhedral oligomeric silsesquioxane (POSS) surfactants. The octa(3‐chloropropyl) polyhedral oligomeric silsesquioxane was prepared by hydrolytic condensation of 3‐chloropropyltrimethoxysilane, which was subsequently quaternized with 2‐dimethylaminoethanol. Montmorillonite was modified with the quaternized surfactants by cation exchange reaction. Bulk polymerization of ε‐caprolactone was conducted at 110°C using stannous octoate as an initiator/catalyst. Nanocomposites were analyzed by X‐ray diffraction, transmission electron microscopy, thermo gravimetric analysis, and differential scanning calorimetry. Hydroxyl functionalized POSS was employed as a surface modifier for clay which gives stable clay separation for its 3‐D structure and also facilitates the miscibility of polymer with clay in the nanocomposites due to the star architecture. An improvement in the thermal stability of PCL was observed even at 1 wt % of clay loading. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号