首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybrid organic–inorganic materials that are compositionally graded are excellent candidates for addressing the challenges related to the bonding of polymeric layers and inorganic substrates. Often, the synthesis of these hybrid materials involves the use of kinetically driven and dynamic solution systems where obtaining the desired hybrid molecular structures in the deposited film is not trivial. A coating process is used to selectively deposit a small fraction of the total species in solution with an optimized molecular weight, resulting in compositionally graded hybrid films that are organic‐rich toward the top and inorganic‐rich toward the bottom. This selective deposition technique provides a unique knob to fine tune the molecular structure of films deposited from dynamic solution systems, resulting in hybrid organic–inorganic films that exhibit an eightfold increase in adhesion of an epoxy/silicon interface.  相似文献   

2.
Through billions of years of evolution and natural selection, biological systems have developed strategies to achieve advantageous unification between structure and bulk properties. The discovery of these fascinating properties and phenomena has triggered increasing interest in identifying characteristics of biological materials, through modern characterization and modeling techniques. In an effort to produce better engineered materials, scientists and engineers have developed new methods and approaches to construct artificial advanced materials that resemble natural architecture and function. A brief review of typical naturally occurring materials is presented here, with a focus on chemical composition, nano‐structure, and architecture. The critical mechanisms underlying their properties are summarized, with a particular emphasis on the role of material architecture. A review of recent progress on the nano/micro‐manufacturing of bio‐inspired hybrid materials is then presented in detail. In this case, the focus is on nacre and bone‐inspired structural materials, petals and gecko foot‐inspired adhesive films, lotus and mosquito eye inspired superhydrophobic materials, brittlestar and Morpho butterfly‐inspired photonic structured coatings. Finally, some applications, current challenges and future directions with regard to manufacturing bio‐inspired hybrid materials are provided.  相似文献   

3.
van der Waals heterostructures, composed of vertically stacked inorganic 2D materials, represent an ideal platform to demonstrate novel device architectures and to fabricate on‐demand materials. The incorporation of organic molecules within these systems holds an immense potential, since, while nature offers a finite number of 2D materials, an almost unlimited variety of molecules can be designed and synthesized with predictable functionalities. The possibilities offered by systems in which continuous molecular layers are interfaced with inorganic 2D materials to form hybrid organic/inorganic van der Waals heterostructures are emphasized. Similar to their inorganic counterpart, the hybrid structures have been exploited to put forward novel device architectures, such as antiambipolar transistors and barristors. Moreover, specific molecular groups can be employed to modify intrinsic properties and confer new capabilities to 2D materials. In particular, it is highlighted how molecular self‐assembly at the surface of 2D materials can be mastered to achieve precise control over position and density of (molecular) functional groups, paving the way for a new class of hybrid functional materials whose final properties can be selected by careful molecular design.  相似文献   

4.
The search for new materials for tailor‐made applications and new devices involves not only solid‐state chemists, physicists or materials engineers, but also the area molecular and organo‐metallic chemistry, and even biochemistry. This is especially clear in the field of organic–inorganic multifunctional materials, whose design necessitates to investigate new concepts and principles developed in these different disciplines. Here, the authors review the structure‐magnetic property relationships in layered structures, made of organic and inorganic subunits.  相似文献   

5.
Hybrid fluorescent materials constructed from organic chelating fluorescent probes and inorganic solid supports by covalent interactions are a special type of hybrid sensing platform that has gained much interest in the context of metal ion sensing applications owing to their excellent advantages, recyclability, and solubility/dispersibility in particular, as compared with single organic fluorescent molecules. In recent decades, SiO2 materials and core–shell Fe3O4@SiO2 nanoparticles have become important inorganic solid materials and have been used as inorganic solid supports to hybridize with organic fluorescent receptors, resulting in multifunctional fluorescent hybrid systems for potential applications in sensing and related research fields. Therefore, recent progress in various fluorescent‐group‐functionalized SiO2 materials is reviewed, with a focus on mesoporous silica nanoparticles and core–shell Fe3O4@SiO2 nanoparticles, as interesting fluorescent organic–inorganic hybrid materials for sensing applications toward essential and toxic metal ions. Selective examples of other types of silica/silicon materials, such as periodic mesoporous organosilicas, solid SiO2 nanoparticles, fibrous silica spheres, silica nanowires, silica nanotubes, and silica hollow microspheres, are also mentioned. Finally, relevant perspectives of metal‐ion‐sensing‐oriented silica‐fluorescent probe hybrid materials are provided.  相似文献   

6.
The ability to produce or alter materials to obtain drastically different or improved properties has been the driving goal of materials science since its inception. Combining multiple elements, compounds, or materials while maintaining the beneficial aspects of each constituent is a complex problem often involving highly interdisciplinary research. Hybrid materials, i.e. materials that incorporate organic and inorganic parts, have become popular in a variety of fields. Though not entirely new, the modern embodiment of hybrid materials has led to a large variety of new materials and techniques to produce them. One of the most recent being combination of atomic layer deposition (ALD), which produces inorganic materials, and molecular layer deposition (MLD), which produces organic materials. Furthermore, a variation on these techniques, commonly referred to as infiltration, has allowed for the modification of a variety of natural and synthetic polymers with surprising results related to their bulk mechanical properties. In this review three approaches are taken. First, hybrid materials through bottom-up combinations of ALD and MLD are reviewed, focusing on the process and properties of the resulting materials. Second, the modification of biomaterials through coating is discussed, and finally the relatively new concept of vapor phase infiltration is considered as a new and unique method to produce hybrid materials from a top down perspective.  相似文献   

7.
The origin of complex superstructures of biomaterials in biological systems and the amazing self‐assembly mechanisms of their emergence have attracted a great deal of attention recently. Mimicking nature, diverse kinds of hydrophilic polymers with different functionalities and organic insoluble matrices have been designed for the morphogenesis of inorganic crystals. In this Research News, emerging new strategies for morphogenesis and controlled crystal growth of minerals, that is, selective adsorption and mesoscale transformation for highly ordered superstructures, the combination of a synthetic hydrophilic polymer with an insoluble matrix, a substrate, or the air/solution interface, and controlled crystallization in a mixed solvent are highlighted. It is shown that these new strategies can be even further extended to morphogenesis and controlled crystallization of diverse inorganic or inorganic–organic hybrid materials with structural complexity, structural specialties, and improved functionalities.  相似文献   

8.
The major advances in the field of the designed construction of hierarchically structured porous inorganic or hybrid materials wherein multiscale texturation is obtained via the combination of aerosol or spray processing with sol-gel chemistry, self-assembly and multiple templating are the topic of this review. The available materials span a very large set of structures and chemical compositions (silicates, aluminates, transition metal oxides, nanocomposites including metallic or chalcogenides nanoparticles, hybrid organic-inorganic, biohybrids). The resulting materials are manifested as powders or smart coatings via aerosol-directed writing combine the intrinsic physical and chemical properties of the inorganic or hybrid matrices with defined multiscale porous networks having a tunable pore size and connectivity, high surface area and accessibility. Indeed the combination of soft chemical routes and spray processing provides "a wind of change" in the field of "advanced materials". These strategies give birth to a promising family of innovative materials with many actual and future potential applications in various domains such as catalysis, sensing, photonic and microelectronic devices, nano-ionics and energy, functional coatings, biomaterials, multifunctional therapeutic carriers, and microfluidics, among others.  相似文献   

9.
Conventional synthesis of inorganic materials relies heavily on water and organic solvents. Alternatively, the synthesis of inorganic materials using, or in the presence of, ionic liquids represents a burgeoning direction in materials chemistry. Use of ionic liquids in solvent extraction and organic catalysis has been extensively studied, but their use in inorganic synthesis has just begun. Ionic liquids are a family of non‐conventional molten salts that can act as templates and precursors to inorganic materials, as well as solvents. They offer many advantages, such as negligible vapor pressures, wide liquidus ranges, good thermal stability, tunable solubility for both organic and inorganic molecules, and much synthetic flexibility. In this Review, the use of ionic liquids in the preparation of several categories of inorganic and hybrid materials (i.e., metal structures, non‐metal elements, silicas, organosilicas, metal oxides, metal chalcogenides, metal salts, open‐framework structures, ionic liquid‐functionalized materials, and supported ionic liquids) is summarized. The status quo of the research field is assessed, and some future perspectives are furnished.  相似文献   

10.
Functional hybrids are nanocomposite materials lying at the interface of organic and inorganic realms, whose high versatility offers a wide range of possibilities to elaborate tailor‐made materials in terms of chemical and physical properties. Because they present several advantages for designing materials for optical applications (versatile and relatively facile chemistry, easy shaping and patterning, materials having good mechanical integrity and excellent optical quality), numerous silica or/and siloxane based hybrid organic–inorganic materials have been developed in the past few years. The most striking examples of functional hybrids exhibiting emission properties (solid‐state dye lasers, rare‐earth doped hybrids, electroluminescent devices), absorption properties (photochromic), nonlinear optical (NLO) properties (second‐order NLO properties, photochemical hole burning (PHB), photorefractivity), and sensing are summarized in this review.  相似文献   

11.
Organic crystalline materials are used as dyes/pigments, pharmaceuticals, and active components of photonic and electronic devices. There is great interest in integrating organic crystals with inorganic and carbon nanomaterials to create nanocomposites with enhanced properties. Such efforts are hampered by the difficulties in interfacing organic crystals with dissimilar materials. Here, an approach that employs organic nanocrystallization is presented to fabricate solution‐processed organic nanocrystal/carbon nanotube (ONC/CNT) hybrid materials based on readily available organic dyes (perylene diimides (PDIs)) and carbon nanotubes. The hybrids are prepared by self‐assembly in aqueous media to afford free‐standing films with tunable CNT content. These exhibit excellent conductivities (as high as 5.78 ± 0.56 S m?1), and high thermal stability that are superior to common polymer/CNT hybrids. The color of the hybrids can be tuned by adding various PDI derivatives. ONC/CNT hybrids represent a novel class of nanocomposites, applicable as optoelectronic and conductive colorant materials.  相似文献   

12.
Materials science evolves to a state where the composition and structure of a crystal can be controlled almost at will. Given that a composition meets basic requirements of stoichiometry, steric demands, and charge neutrality, researchers are now able to investigate a wide range of compounds theoretically and, under various experimental conditions, select the constituting fragments of a crystal. One intriguing playground for such materials design is the perovskite structure. While a game of mixing and matching ions has been played successfully for about 150 years within the limits of inorganic compounds, the recent advances in organic–inorganic hybrid perovskite photovoltaics have triggered the inclusion of organic ions. Organic ions can be incorporated on all sites of the perovskite structure, leading to hybrid (double, triple, etc.) perovskites and inverse (hybrid) perovskites. Examples for each of these cases are known, even with all three sites occupied by organic molecules. While this change from monatomic ions to molecular species is accompanied with increased complexity, it shows that concepts from traditional inorganic perovskites are transferable to the novel hybrid materials. The increased compositional space holds promising new possibilities and applications for the universe of perovskite materials.  相似文献   

13.
Hybrid nanomaterials are molecular or colloidal‐level combinations of organic and inorganic materials, or otherwise strongly dissimilar materials. They are often, though not exclusively, anisotropic in shape. A canonical example is an inorganic nanorod or nanosheet sheathed in, or decorated by, a polymeric or other organic material, where both the inorganic and organic components are important for the properties of the system. Hybrid nanomaterials and nanocomposites have generated strong interest for a broad range of applications due to their functional properties. Generating macroscopic assemblies of hybrid nanomaterials and nanomaterials in nanocomposites with controlled orientation and placement by directed assembly is important for realizing such applications. Here, a survey of critical issues and themes in directed assembly of hybrid nanomaterials and nanocomposites is provided, highlighting recent efforts in this field with particular emphasis on scalable methods.  相似文献   

14.
Rational design and synthesis of 2D organic–inorganic hybrid materials is important for transformative technological advances for energy storage. Here, a 2D conductive hybrid lamella and its intercalation properties for thin‐film supercapacitors are reported. The 2D organic–inorganic hybrid lamella comprises periodically stacked 2D nanosheets with 11.81 Å basal spacing, and is electronically conductive (605 S m?1). In contrast to the pre‐existing organic‐based 2D materials, this material has extremely low gas‐permeable porosity (16.5 m2 g?1) in contrast to the high ionic accessibility. All these structural features collectively contribute to the high capacitances up to 732 F cm?3, combined with small structural swelling at as low as 4.8% and good stability. At a discharge time of 6 s, the thin‐film intercalation electrode delivers an energy density of 24 mWh cm?3, which universally outperforms the surface‐dominant capacitive processes in porous carbons.  相似文献   

15.
Organic–inorganic hybrid materials aiming to combine the individual advantages of organic and inorganic components while overcoming their intrinsic drawbacks have shown great potential for future applications in broad fields. In particular, the integration of functional organic fragments into the framework of mesoporous silica to fabricate mesoporous organosilica materials has attracted great attention in the scientific community for decades. The development of such mesoporous organosilica materials has shifted from bulk materials to nanosized mesoporous organosilica nanoparticles (designated as MONs, in comparison with traditional mesoporous silica nanoparticles (MSNs)) and corresponding applications in nanoscience and nanotechnology. In this comprehensive review, the state‐of‐art progress of this important hybrid nanomaterial family is summarized, focusing on the structure/composition–performance relationship of MONs of well‐defined morphology, nanostructure, and nanoparticulate dimension. The synthetic strategies and the corresponding mechanisms for the design and construction of MONs with varied morphologies, compositions, nanostructures, and functionalities are overviewed initially. Then, the following part specifically concentrates on their broad spectrum of applications in nanotechnology, mainly in nanomedicine, nanocatalysis, and nanofabrication. Finally, some critical issues, presenting challenges and the future development of MONs regarding the rational synthesis and applications in nanotechnology are summarized and discussed. It is highly expected that such a unique molecularly organic–inorganic nanohybrid family will find practical applications in nanotechnology, and promote the advances of this discipline regarding hybrid chemistry and materials.  相似文献   

16.
State‐of‐the‐art energy storage devices are capable of delivering reasonably high energy density (lithium ion batteries) or high power density (supercapacitors). There is an increasing need for these power sources with not only superior electrochemical performance, but also exceptional flexibility. Graphene has come on to the scene and advancements are being made in integration of various electrochemically active compounds onto graphene or its derivatives so as to utilize their flexibility. Many innovative synthesis techniques have led to novel graphene‐based hybrid two‐dimensional nanostructures. Here, the chemically integrated inorganic‐graphene hybrid two‐dimensional materials and their applications for energy storage devices are examined. First, the synthesis and characterization of different kinds of inorganic‐graphene hybrid nanostructures are summarized, and then the most relevant applications of inorganic‐graphene hybrid materials in flexible energy storage devices are reviewed. The general design rules of using graphene‐based hybrid 2D materials for energy storage devices and their current limitations and future potential to advance energy storage technologies are also discussed.  相似文献   

17.
Many inorganic and organic materials exhibit redox states with distinct electronic (UV‐vis) absorption bands. When the switching of redox states generates new or different visible region bands, the material is electrochromic. Electrochromic materials are currently attracting much interest in academia and industry for both their fascinating spectroelectrochemical properties and their commercial applications. In this review some of the most important examples from the major classes of electrochromic materials are highlighted. Examples of their use in both prototype and commercial electrochromic devices are illustrated including car mirrors, windows and sun‐roofs of cars, windows of buildings, displays (see Figure), printing, and frozen‐food monitoring.  相似文献   

18.
This review surveys the work developed in the field of functional hybrid materials, especially those containing conducting organic polymers (COPs), in combination with a variety of inorganic species, from molecular to extended phases, including clusters and nano‐sized inorganic particles. Depending on the dominating structural matrix, we distinguish and analyze organic–inorganic (OI) hybrids, nanocomposite materials, and inorganic–organic (IO) phases. These materials have been used in a wide variety of applications, including energy‐storage applications, electrocatalysis, the harnessing of electrochromic and photoelectrochromic properties, application in display devices, photovoltaics, and novel energy‐conversion systems, proton‐pump electrodes, sensors, or chemiresistive detectors, which work as artificial “noses”.  相似文献   

19.
New inorganic–organic hybrid structures based on metal complexes have become of increasing interest over the last few decades in the search for new materials. Many different polypyridyl metal complexes have been investigated. Recently, a strong increase in interest regarding 2,2′:6′,2″‐terpyridine has been observed. In particular, octahedral bis‐2,2′:6′,2″‐terpyridine metal complexes offer the advantages of increased symmetry and, in the case of ruthenium(III )/ruthenium(II ) complexation, an entrance to a directed complexation technique. Apart from the combination with polymeric systems, ordered inorganic–organic structures on surfaces are becoming better understood concurrently with the development of sophisticated nanotechnology characterization techniques. There are many ongoing efforts that include terpyridine complex structures, especially concerning photophysical processes such as solar light to energy conversion. This review deals with the incorporation of terpyridine complexes into polymeric structures such as poly(ethylene glycol), poly(styrene), dendrimers, biomacromolecules, micelles, and resins, as well as the combination of terpyridine complexes with surfaces for electrocatalytic, photophysical, and self‐assembly purposes.  相似文献   

20.
Forming two structurally different but associated polymer structures in a single step is a possible route for the production of nanostructured materials. By means of twin polymerization of specially constructed monomers consisting of two different covalently bonded building blocks (hybrid monomers), this route is realized. What is important is that two different macromolecular structures are formed from one monomer in a single process. The two polymers formed can be linear, branched, or cross‐linked structures. The molecular composition of the hybrid monomer defines the degree of cross‐linking of the corresponding macromolecular structures that is theoretically possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号