首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The synthesis of large lattice mismatch metal‐semiconductor core–shell hetero‐nanostructures remains challenging, and thus the corresponding optical properties are seldom discussed. Here, we report the gold‐nanorod‐seeded growth of Au–CdS core–shell hetero‐nanorods by employing Ag2S as an interim layer that favors CdS shell formation through a cation‐exchange process, and the subsequent CdS growth, which can form complete core–shell structures with controllable shell thickness. Exciton–plasmon interactions observed in the Au–CdS nanorods induce shell thickness‐tailored and red‐shifted longitudinal surface plasmon resonance and quenched CdS luminescence under ultraviolet light excitation. Furthermore, the Au–CdS nanorods demonstrate an enhanced and plasmon‐governed two‐photon luminescence under near‐infrared pulsed laser excitation. The approach has potential for the preparation of other metal‐semiconductor hetero‐nanomaterials with complete core–shell structures, and these Au–CdS nanorods may open up intriguing new possibilities at the interface of optics and electronics.  相似文献   

2.
Numerous endeavors have been undertaken to gain enhanced upconversion luminescence via surface plasmon resonance (SPR) generated by specially designed nanostructures of noble metals (e.g., Au, Ag). However, the SPR response of these metals is usually weak in the ultraviolet (UV) region because of their intrinsic electronic configurations; thus, only green and red upconversion emissions can undergo significant plasmonic enhancement yet without selectivity, while an efficient approach to selectively enhancing the blue upconversion luminescence has been lacking. Herein, by integrating the pronounced UV SPR of silica‐coated indium nanocrystals (InNCs) with blue‐emission upconversion nanoparticles (UCNPs) of NaYbF4:Tm, an up to tenfold selective luminescence enhancement at 450 nm is obtained upon 980 nm laser excitation. Precise manipulation of the silica shell thickness suggests an optimal working distance of 3 nm between InNCs and UCNPs. This study has, for the first time, realized selective blue upconversion luminescence enhancement by using an inexpensive, non‐noble metal material, which will not only enrich the fundamental investigations of SPR‐enhanced upconversion emission, but also widen the applications of blue light‐emitting nanomaterials, for example, in therapeutics.  相似文献   

3.
With the rapid development of nanotechnology during the last decades, the ability to detect and control individual objects at the nanoscale has enabled us to deal with complex biomedical challenges. In cancer imaging, novel nanoparticles (NPs) offer promising potential to identify single cancer cells and precisely label larger areas of cancer tissues. Herein, a new class of size tunable core–shell composite (Au–SiO2–WO3) nanoparticles is reported. These nanoparticles display an easily improvable ≈103 surface‐enhanced Raman scattering (SERS) enhancement factor with a double Au shell for dried samples over Si wafers and several orders of magnitude for liquid samples. WO3 core nanoparticles measuring 20–50 nm in diameter are sheathed by an intermediate 10–60 nm silica layer, produced by following the Stöber‐based process and Turkevich method, followed by a 5–20 nm thick Au outer shell. By attaching 4‐mercaptobenzoic acid (4‐MBA) molecules as Raman reporters to the Au, high‐resolution Raman maps that pinpoint the nanoparticles' location are obtained. The preliminary results confirm their advantageous SERS properties for single‐molecule detection, significant cell viability after 24 h and in vitro cell imaging using coherent anti‐stokes Raman scattering. The long‐term objective is to measure SERS nanoparticles in vivo using near‐infrared light.  相似文献   

4.
This work presents a strategy of combining the concepts of localized surface plasmons (LSPs) and core/shell nanostructure configuration in a single perovskite light‐emitting diode (PeLED) to addresses simultaneously the emission efficiency and stability issues facing current PeLEDs' challenges. Wide bandgap n‐ZnO nanowires and p‐NiO are employed as the carrier injectors, and also the bottom/upper protection layers to construct coaxial core/shell heterostructured CsPbBr3 quantum dots LEDs. Through embedding plasmonic Au nanoparticles into the device and thickness optimization of the MgZnO spacer layer, an emission enhancement ratio of 1.55 is achieved. The best‐performing plasmonic PeLED reaches up a luminance of 10 206 cd m?2, an external quantum efficiency of ≈4.626%, and a current efficiency of 8.736 cd A?1. The underlying mechanisms for electroluminescence enhancement are associated with the increased spontaneous emission rate and improved internal quantum efficiency induced by exciton–LSP coupling. More importantly, the proposed PeLEDs, even without encapsulation, present a substantially improved operation stability against water and oxygen degradation (30‐day storage in air ambient, 85% humidity) compared with any previous reports. It is believed that the experimental results obtained will provide an effective strategy to enhance the performance of PeLEDs, which may push forward the application of such kind of LEDs.  相似文献   

5.
Traditionally, bandgap materials are a prerequisite to photocatalysis since they can harness a reasonable range of the solar spectrum. However, the high impedance across the bandgap and the low concentration of intrinsic charge carriers have limited their energy conversion. By contrast, metallic nanoparticles possess a sea of free electrons that can effectively promote the transition to the excited state for reactions. Here, an atomic layer of a bimetallic concoction of silver–gold shells is precisely fabricated onto an Au core via a sonochemical dispersion approach to form a core–shell of Au–Ag that exploits the wide availability of excited states of Ag while maintaining an efficient localized surface plasmon resonance (LSPR) of Au. Catalytic results demonstrate that this mix of Ag and Au can convert solar energy to hydrogen at high efficiency with an increase of 112.5% at an optimized potential of −0.5 V when compared to light-off conditions under the electrochemical LSPR. This outperforms the commercial Pt catalysts by 62.1% with a hydrogen production rate of 1870 µmol g−1 h−1 at room temperature. This study opens a new route for tuning the range of light capture of hydrogen evolution reaction catalysts using fabricated core–shell material through the combination of LSPR with electrochemical means.  相似文献   

6.
Hybrid plasmonic nanostructures comprising gold nanoparticle (AuNP) arrays separated from Au substrate through a temperature‐sensitive poly(N‐isopropylacrylamide) (PNIPAM) linker layer are constructed, and unique plasmonic‐coupling‐based surface plasmon resonance (SPR) sensing properties are investigated. The optical properties of the model system are investigated by in situ and scan‐mode SPR analysis. The swelling‐shrinking transitions in the polymer linker brush are studied by in situ contact‐mode atomic force microscopy at two different temperatures in water. It is revealed that the thickness of the PNIPAM layer is decreased from 30 to 14 nm by increasing the temperature from 20 to 32 °C. For the first time the dependence of the coupling behavior in AuNPs is investigated with controlled density on the temperature in a quantitative manner in terms of the change in SPR signals. The device containing AuNPs with optimized AuNP density shows 3.2‐times enhanced sensitivity compared with the control Au film‐PNIPAM sample. The refractive index sensing performance of the Au film‐PNIPAM‐AuNPs is greater than that of Au film‐PNIPAM by 19% when the PNIPAM chains have a collapsed conformation above lower critical solution temperature.  相似文献   

7.
A novel Ag–silica–Au hybrid device is developed that displays a long‐range plasmon transfer of Ag to Au leading to enhanced Raman scattering of molecules largely separated from the optically excited Ag surface. A nanoscopically rough Ag surface is coated by a silica spacer of variable thickness from ~1 to 21 nm and a thin Au film of ~25 nm thickness. The outer Au surface is further functionalized by a self‐assembled monolayer (SAM) for electrostatic binding of the heme protein cytochrome c (Cyt c) that serves as a Raman probe and model enzyme. High‐quality surface‐enhanced resonance Raman (SERR) spectra are obtained with 413 nm excitation, demonstrating that the enhancement results exclusively from excitation of Ag surface plasmons. The enhancement factor is estimated to be 2 × 104–8 × 103 for a separation of Cyt c from the Ag surface by 28–47 nm, corresponding to an attenuation of the enhancement by a factor of only 2–6 compared to Cyt c adsorbed directly on a SAM‐coated Ag electrode. Upon immobilization of Cyt c on the functionalized Ag–silica–Au device, the native structure and redox properties are preserved as demonstrated by time‐ and potential‐dependent SERR spectroscopy.  相似文献   

8.
Monodispersed, readily‐grafted, and biocompatible surface‐enhanced Raman spectroscopic (SERS) tagging materials are developed; they are composed of bimetallic Au@Ag nanoparticles (NPs) for optical enhancement, a reporter molecule for spectroscopic signature, and a carbon shell for protection and bioconjugation. A controllable and convenient hydrothermal synthetic route is presented to synthesize the layer‐by‐layer triplex Au–Ag–C core–shell NPs, which can incorporate the Raman‐active label 4‐mercapto benzoic acid (4‐MBA). The obtained gold seed–silver coated particles can be coated further with a thickness‐controlled carbon shell to form colloidal carbon‐encapsulated Aucore/Agshell spheres with a monodisperse size distribution. Furthermore, these SERS‐active spheres demonstrated interesting properties as a novel Raman tag for quantitative immunoassays. The results suggest such SERS tags can be used for multiplex and ultrasensitive detection of biomolecules as well as nontoxic, in vivo molecular imaging of animal or plant tissues.  相似文献   

9.
The metallic nanostructures with unique properties of tunable plasmon resonance and large field enhancement have been cooperated with semiconductor to construct hetero‐nanostructures for various applications. Herein, a general and facile approach to synthesize uniform dumbbell‐like gold–sulfide core–shell hetero‐nanostructures is reported. The transformation from Au nanorods (NRs) to dumbbell‐like Au NRs and coating of metal sulfide shells (including Bi2S3, CdS, CuxS, and ZnS) are achieved in a one‐pot reaction. Due to the reshaping of Au core and the deposition of sulfide shell, the plasmon resonances of Au NRs are highly enhanced, especially the about 2 times enhancement for the visible transverse plasmon resonance compared with the initial Au NRs. Owing to the highly enhanced visible light absorption and strong local electric field, we find the photocatalytic activity of dumbbell‐like Au–Bi2S3 NRs is largely enhanced compared with pure Bi2S3 and normal Au–Bi2S3 NRs by testing the photodegradation rate of Rhodamine B (RhB). Moreover, the second‐layer sulfide can be coated and the double‐shell Au–Bi2S3–CdS hetero‐nanostructures show further improved photodegradation rate, especially about 2 times than that of Degussa P25 TiO2 (P25) ascribing to the optimum band arrangement and then the prolonged lifetime of photo‐generated carriers.  相似文献   

10.
通过调控Au纳米颗粒的形状和尺寸,研究了Au纳米颗粒的形状和尺寸与表面等离子体之间的关系。通过直流磁控溅射的方法在外延片上溅射Au薄膜,并采用快速热退火和常规热退火两种方式对其进行热退火,制备出Au纳米颗粒。使用不同热退火方式、不同热退火温度及不同Au薄膜厚度来改变Au纳米颗粒的形状和尺寸,并对Au纳米颗粒的表面形貌及它的消光谱进行了分析,对比了不同形貌的Au纳米颗粒对表面等离子体共振特性的影响。实验结果表明,使用普通热退火制备的Au纳米颗粒形状接近球体,而使用快速热退火得到的Au纳米颗粒的形状更接近棒体;随着热退火温度的升高,表面等离子体的共振波长发生红移;随着Au薄膜厚度的增加,表面等离子体的共振波长也发生红移。  相似文献   

11.
A novel Au dimer‐based colorimetric sensor is reported that consists of Au dimers to a chitosan hydrogel film. It utilizes the ultrasensitively gap‐dependent properties of plasmonic coupling (PC) peak shift, which is associated with the dynamical tuning of the interparticle gap of the Au dimer driven by the volume swelling of the chitosan hydrogel film. The interparticle gap and PC peak shift of the Au dimer can be precisely and extensively controlled through the pH‐driven volume change of chitosan hydrogel film. This colorimetric sensor exhibits a high optical sensitivity and stability, and it works in a completely reversible manner at high pH values. Importantly, the sensitivity of the composite film can be tuned by controlling the crosslinking time of the composite film, and thus leading to a wide dynamic tuning sensitive range for different applications. This presented strategy paves a way to achieve the construction of high‐quality colorimetric sensors with ultrahigh sensitivity, stability and wide dynamic tuning sensitive range.  相似文献   

12.
Asymmetric Janus nanostructures containing a gold nanocage (NC) and a carbon–titania hybrid nanocrystal (AuNC/(C–TiO2)) are prepared using a novel and facile microemulsion‐based approach that involves the assistance of ethanol. The localized surface plasmon resonance of the Au NC with a hollow interior and porous walls induce broadband visible‐light harvesting in the Janus AuNC/(C–TiO2). An acetone evolution rate of 6.3 μmol h?1 g?1 is obtained when the Janus nanostructure is used for the photocatalytic aerobic oxidation of iso‐propanol under visible light (λ = 480–910 nm); the rate is 3.2 times the value of that obtained with C–TiO2, and in photo‐electrochemical investigations an approximately fivefold enhancement is obtained. Moreover, when compared with the core–shell structure (AuNC@(C–TiO2) and a gold–carbon–titania system where Au sphere nanoparticles act as light‐harvesting antenna, Janus AuNC/(C–TiO2) exhibit superior plasmonic enhancement. Electromagnetic field simulation and electron paramagnetic resonance results suggest that the plasmon–photon coupling effect is dramatically amplified at the interface between the Au NC and C–TiO2, leading to enhanced generation of energetic hot electrons for photocatalysis.  相似文献   

13.
The design of new functional materials with excellent hydrogen production activity under visible‐light irradiation has critical significance for solving the energy crisis. A well‐controlled synthesis strategy is developed to prepare an Au–Pt–CdS hetero‐nanostructure, in which each component of Au, Pt, and CdS has direct contact with the other two materials; Pt is on the tips and a CdS layer along the sides of an Au nanotriangle (NT), which exhibits excellent photocatalytic activity for hydrogen production under light irradiation (λ > 420 nm). The sequential growth and surfactant‐dependent deposition produce the three‐component Au–Pt–CdS hybrids with the Au NT acting as core while Pt and CdS serve as a co‐shell. Due to the presence of the Au NT cores, the Au–Pt–CdS nanostructures possess highly enhanced light‐harvesting and strong local‐electric‐field enhancement. Moreover, the intimate and multi‐interface contact generates multiple electron‐transfer pathways (Au to CdS, CdS to Pt and Au to Pt) which guide photoexcited electrons to the co‐catalyst Pt for an efficient hydrogen reduction reaction. By evaluating the hydrogen production rate when aqueous Na2SO3–Na2S solution is used as sacrificial agent, the Au–Pt–CdS hybrid exhibits excellent photocatalytic activity that is about 2.5 and 1.4 times larger than those of CdS/Pt and Au@CdS/Pt, respectively.  相似文献   

14.
The control of optical and transport properties of semiconductor heterostructures is crucial for engineering new nanoscale photonic and electrical devices with diverse functions. Core–shell nanowires are evident examples of how tailoring the structure, i.e., the shell layer, plays a key role in the device performance. However, III–V semiconductors bandgap tuning has not yet been fully explored in nanowires. Here, a novel InAs/AlSb core–shell nanowire heterostructure is reported grown by molecular beam epitaxy and its application for room temperature infrared photodetection. The core–shell nanowires are dislocation‐free with small chemical intermixing at the interfaces. They also exhibit remarkable radiative emission efficiency, which is attributed to efficient surface passivation and quantum confinement induced by the shell. A high‐performance core–shell nanowire phototransistor is also demonstrated with negative photoresponse. In comparison with simple InAs nanowire phototransistor, the core–shell nanowire phototransistor has a dark current two orders of magnitude smaller and a sixfold improvement in photocurrent signal‐to‐noise ratio. The main factors for the improved photodetector performance are the surface passivation, the oxide in the AlSb shell and the type‐II bandgap alignment. The study demonstrates the potential of type‐II core–shell nanowires for the next generation of photodetectors on silicon.  相似文献   

15.
For the effective application of surface‐enhanced Raman scattering (SERS) nanoprobes for in vivo targeting, the tissue transparency of the probe signals should be as high as it can be in order to increase detection sensitivity and signal reproducibility. Here, near‐infrared (NIR)‐sensitive SERS nanoprobes (NIR SERS dots) are demonstrated for in vivo multiplex detection. The NIR SERS dots consist of plasmonic Au/Ag hollow‐shell (HS) assemblies on the surface of silica nanospheres and simple aromatic Raman labels. The diameter of the HS interior is adjusted from 3 to 11 nm by varying the amount of Au3+ added, which results in a red‐shift of the plasmonic extinction of the Au/Ag nanoparticles toward the NIR (700–900 nm). The red‐shifted plasmonic extinction of NIR SERS dots causes enhanced SERS signals in the NIR optical window where endogenous tissue absorption coefficients are more than two orders of magnitude lower than those for ultraviolet and visible light. The signals from NIR SERS dots are detectable from 8‐mm deep in animal tissues. Three kinds of NIR SERS dots, which are injected into live animal tissues, produce strong SERS signals from deep tissues without spectral overlap, demonstrating their potential for in vivo multiplex detection of specific target molecules.  相似文献   

16.
Noninvasive near‐infrared (NIR) light responsive therapy is a promising cancer treatment modality; however, some inherent drawbacks of conventional phototherapy heavily restrict its application in clinic. Rather than producing heat or reactive oxygen species in conventional NIR treatment, here a multifunctional yolk–shell nanoplatform is proposed that is able to generate microbubbles to destruct cancer cells upon NIR laser irradiation. Besides, the therapeutic effect is highly improved through the coalition of small interfering RNA (siRNA), which is codelivered by the nanoplatform. In vitro experiments demonstrate that siRNA significantly inhibits expression of protective proteins and reduces the tolerance of cancer cells to bubble‐induced environmental damage. In this way, higher cytotoxicity is achieved by utilizing the yolk–shell nanoparticles than treated with the same nanoparticles missing siRNA under NIR laser irradiation. After surface modification with polyethylene glycol and transferrin, the yolk–shell nanoparticles can target tumors selectively, as demonstrated from the photoacoustic and ultrasonic imaging in vivo. The yolk–shell nanoplatform shows outstanding tumor regression with minimal side effects under NIR laser irradiation. Therefore, the multifunctional nanoparticles that combining bubble‐induced mechanical effect with RNA interference are expected to be an effective NIR light responsive oncotherapy.  相似文献   

17.
This contribution describes the preparation of multifunctional yolk–shell nanoparticles (YSNs) consisting of a core of silica spheres and an outer shell based on periodic mesoporous organosilica (PMO) with perpendicularly aligned mesoporous channels. The new yolk–shell hybrid materials were synthesised through a dual mesophase and vesicle soft templating method. The mesostructure of the shell, the dimension of the hollow space (4~52 nm), and the shell thickness (16~34 nm) could be adjusted by precise tuning of the synthesis parameters, as evidenced by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen sorption investigations. Various metal nanoparticles (e.g., Au, Pt, and Pd) were encapsulated and confined in the void space between the core and the shell using impregnation and reduction of adequate metal precursors. The selective oxidation of various alcohol substrates was then carried out to illustrate the benefits of such an architecture in catalysis. High conversion (~100%) and excellent selectivity (~99%) were obtained over Pd nanoparticles encapsulated in the hybrid PMO yolk–shell structures.  相似文献   

18.
The plasmonic characteristic of core–shell nanomaterials can effectively improve exciton‐generation/dissociation and carrier‐transfer/collection. In this work, a new strategy based on core–shell Au@CdS nanospheres is introduced to passivate perovskite grain boundaries (GBs) and the perovskite/hole transport layer interface via an antisolvent process. These core–shell Au@CdS nanoparticles can trigger heterogeneous nucleation of the perovskite precursor for high‐quality perovskite films through the formation of the intermediate Au@CdS–PbI2 adduct, which can lower the valence band maximum of the 2,2,7,7‐tetrakis(N,N‐di‐p‐methoxyphenyl‐amine)9,9‐spirobifluorene (Spiro‐OMeTAD) for a more favorable energy alignment with the perovskite material. With the help of the localized surface plasmon resonance effect of Au@CdS, holes can easily overcome the barrier at the perovskite/Spiro‐OMeTAD interface (or GBs) through the bridge of the intermediate Au@CdS–PbI2, avoiding the carrier accumulation, and suppress the carrier trap recombination at the Spiro‐OMeTAD/perovskite interface. Consequently, the Au@CdS‐based perovskite solar cell device achieves a high efficiency of over 21%, with excellent stability of ≈90% retention of initial power conversion efficiencies after 45 days storage in dry air.  相似文献   

19.
Core–shell zeolite composites possessing a core and a shell of different zeolite structure types have been synthesized. A characteristic feature of the obtained composites is the relatively large single‐crystal core and the very thin polycrystalline shell. The incompatibility between the core crystals and the zeolite precursor mixture yielding the shell layer has been circumvented by the adsorption of nanoseeds on the core surface, which induced the crystallization of the shell. The pretreated core crystals are subsequently subjected to a continuous growth in a zeolite precursor mixture. The feasibility of this synthetic approach has been exemplified by the preparation of core–shell β‐zeolite–silicalite‐1 composites. The synthesized composites have been characterized using X‐ray diffraction, high‐resolution transmission electron microscopy, and scanning electron microscopy. The integrity of the shell layer has been tested via N2‐adsorption measurements on materials comprising a calcined core (β‐zeolite) and a non‐calcined tetrapropylammonium (TPA)‐containing shell, the latter being non‐permeable for the N2 molecules. These measurements have shown that 86 % of the β‐zeolite crystals are covered with a defect‐free TPA–silicalite‐1 shell after a single hydrothermal treatment, while after three consecutive crystallization steps this value reaches 99 %. The shell integrity of the calcined composite has been studied by the adsorption of butane, toluene, and 1,3,5‐trimethylbenzene, which confirmed the superior performance of the triple‐shell composites.  相似文献   

20.
Effective temperature measurements are of significance for a fundamental understanding of nanosystems and functional applications, requiring ultimate miniaturization of thermometers with reduced size but maintained sensitivity, simplicity, and accuracy of temperature reading. Grand challenges exist for scenarios of thermal shock or combustion where materials may be subjected to extreme thermal flux and drastic temperature variations, and dynamic thermal sensors with an ultrafast response are yet to be developed. Here, an innovative design of silica–gold core–shell (SiO2@Au) nanospheres is demonstrated as a potential dynamic sensor with a sub‐second response time and accurate temperature determination based on the strong temperature dependence of the thermally induced morphological self‐reorganization and characteristic surface plasmon (SP) absorption of the metal shell. The irreversible thermally induced morphological and optical signatures behave as characteristic “fingerprints” for temperature recordings, allowing the retrieval of thermal history ex‐situ. As compared with current nanothermometer technologies such as metal‐filled nanotubes, the core–shell nanosphere‐based dynamic thermosensor offers synergistic advantages of ultrafast time response, fast readout, permanent recording of thermal history, and ex‐situ capabilities for effective temperature measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号