首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Novel interpenetrating polymer networks (IPNs) coded as KP were synthesized successfully from poly(vinyl alcohol) (PVA) and konjac glucomannan (KGM) in the presence of glutaraldehyde as a crosslink agent. The transparent IPN films that were 40 μm thick were prepared by means of conventional solvent‐casting technique and dried at room temperature for 2 days. The structure and miscibility of the KP films were studied by Fourier transformed infrared spectra, scanning electron microscopy, differential scanning calorimetry, wide‐angle X‐ray diffraction, and ultraviolet visible spectroscopy (UV–Vis). The results indicated that strong intermolecular interaction caused by crosslink bonding between PVA and KGM occurred in the IPN films, resulting in wonderful miscibility when the reaction time is 4 h. The tensile strength, elongation at break, and moisture uptake was much higher than that of the pure PVA film, KGM film, and uncrosslinked blend films. In other words, the structure of IPN endowed the films with excellent performance, so the new material has promising applications to food package film and agricultural film because of its biodegradability. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2775–2780, 2004  相似文献   

2.
Novel blend films of konjac glucomannan (KGM) with gelatin were prepared by using the solvent‐casting technique. Transparent blend films were obtained in all blending ratios of the two polymers. The structure and physical properties of the films were investigated by Fourier transform IR, wide angle X‐ray diffraction, thermogravimetric analysis, differential thermal analysis, scanning electron microscopy (SEM), and strength tests. The results indicated that intermolecular interactions between the KGM and gelatin occurred that were caused by hydrogen bonding and the physical properties of the films largely depended on the blending ratio. The crystallinities of the blend films decreased with the increase of the KGM. The thermal stability and mechanical properties (tensile strength and elongation at break) of the films were improved by blending KGM with gelatin. It is worth noting that the blend films had a good tensile strength of 38 MPa when the KGM content in the blend films was around 30 wt %. The surface morphology of the blend films observed by SEM displayed a certain level of miscibility. Furthermore, the water absorbability of the blend films was also measured and discussed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1596–1602, 2001  相似文献   

3.
The blend films of konjac glucomannan (KGM) and polyacrylamide (PAAm) were prepared by using the solvent‐casting technique. Transparent blend films were obtained in all blending ratios. The physical properties of the films were investigated by Fourier transform infrared spectroscopy, wide‐angle X‐ray diffraction, thermogravimetric analysis, scanning electron microscopy, and by measurement of mechanical properties. The results indicated the occurrence of intra‐ and intermolecular interactions of the pure components, as well as the intermolecular interactions between KGM and PAAm through hydrogen bond formation. The thermal stability and mechanical properties of both tensile strength and elongation at break of the films were improved by blending KGM with PAAm. It was worth noting that the blend film had the greatest tensile strength when the KGM content in the blend films was around 30 wt %. Surface morphology of the films observed by SEM was consistent with the above‐noted results. Furthermore, the water absorbability of the blend films was also investigated. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 882–888, 2001  相似文献   

4.
A novel preservative film was prepared by blending konjac glucomannan (KGM) and poly (diallydimethylammonium chloride) (PDADMAC) in aqueous system. The effects of PDADMAC content on the miscibility, morphology, thermal stability, and mechanical properties of the blend films were investigated by density determination, scanning electron microscopy (SEM), attenuated total reflection infrared spectroscopy (ATR‐IR), X‐ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and tensile tests. The results of the density determination predicted that the blends of KGM and PDADMAC were miscible when the PDADMAC content was less than 70 wt %. Moreover, SEM and XRD confirmed the result. ATR‐IR showed that strong intermolecular hydrogen bonds interaction occurred between the negative charge groups of KGM and the quaternary ammonium groups of PDADMAC in the blends. The tensile strength and the break elongation of the blends were improved largely to 106.5 MPa and 32.04%, when the PDADMAC content was 20 wt %. The thermal stability of the blends was higher than pure KGM. Results from the film‐coating preservation experiments with lichi and grapes showed that the blend film had excellent water‐holding and preservative ability. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

5.
Blend films of konjac glucomannan (KGM) and poly(vinylpyrrolidone) (PVP) were prepared by using a conventional solvent‐casting technique and dried at room temperature. The structure and physical properties were studied by infrared spectroscopy (IR), wide‐angle X‐ray diffraction (WAXD), thermogravimetric analysis (TGA), differential thermal analysis (DTA), scanning electron microscope (SEM), and by measurement of mechanical properties. The changes of carbonyl stretching bands of KGM and PVP and hydroxyl stretching region of KGM were detected by FTIR analysis. WAXD analysis revealed that the film KP‐2 got the lowest crystallinity of all the films. The tensile strength and breaking elongation of the blend films reaches the maximum value at 10 wt % PVP content. The DTA curves indicated the existence of interaction between two kinds of macromolecules. Higher thermal stability was attained by konjac glucomannan through blending with PVP. These improvements are attributable to the existence of a certain degree of interaction between KGM and PVP molecules resulted from intermolecular hydrogen bonds. Air surface morphology of the films observed by SEM was consistent with the results mentioned above. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1049–1055, 2001  相似文献   

6.
Blend films of hexanoyl chitosan (H‐chitosan) and polylactide (PLA) were cast from corresponding blend solutions in chloroform, dichloromethane, or tetrahydrofuran. Thermal degradation behavior of the as‐prepared blend films was intermediate to those of the pure components and no significant effect from the type of the casting solvent was observed. All of the blend films exhibited one composition‐dependent glass transition temperature, but the results only suggested partial miscibility of the components in the amorphous phase at “low” contents of H‐chitosan. As revealed by solvent etching technique, the as‐prepared blend films prepared from the blend solutions in chloroform and dichloromethane showed extensive phase separation of the two components, with the minor phase forming into discrete domains throughout the matrix. Both thermal and X‐ray analyses showed that the apparent degree of crystallinity of the PLA component in the blends decreased monotonically with increasing H‐chitosan content and the choice of the casting solvent did not have an effect on the structure of PLA crystals. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

7.
Biocompatible, biodegradable films composed of a hybrid blend of chitosan and egg phosphatidylcholine (ePC) were characterized in terms of composition, morphology, and performance‐related properties. The miscibility between chitosan and ePC for blends of 1 : 0.2 to 1 : 2.5 chitosan : ePC (wt/wt) was examined by differential scanning calorimetry and X‐ray diffraction analysis. The partial miscibility exhibited between chitosan and ePC provided an understanding of the microdomain morphology that was visualized by laser scanning confocal fluorescence microscopy of the films. The stability of the films in physiologically relevant media was assessed by percent weight loss over time. The mechanical properties of the chitosan–ePC films were determined by dynamic mechanical analysis and tensile tests. Interestingly, the dry film composed of a high lipid formulation (1 : 2.5 (wt/wt) chitosan: ePC) had the lowest tensile strength, contained lipid microdomains (10–30 μm in size), and provided the highest degree of stability. Following immersion in phosphate buffer solution, the Young's modulus of the film was found to decrease by more than two orders of magnitude and could be further manipulated by decreasing the lipid content within the film. In this way, relationships between the composition and the physical as well as mechanical properties of the chitosan–ePC blends were established. Furthermore, this study demonstrates the potential usefulness of partially miscible chitosan‐based blends for biomedical purposes. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3453–3460, 2007  相似文献   

8.
Chitosan and poly(vinyl alcohol) blend fibers were prepared by spinning their solution through a viscose‐type spinneret at 25°C into a coagulating bath containing aqueous NaOH and ethanol. The influence of coagulation solution composition on the spinning performance was discussed, and the intermolecular interactions of blend fibers were studied by infrared analysis (IR), X‐ray diffraction (XRD), and scanning electron micrograph (SEM) and by measurements of mechanical properties and water‐retention properties. The results demonstrated that the water‐retention properties and mechanical properties of the blend fibers increase due to the presence of PVA in the chitosan substract, and the mechanical strength of the blends is also related to PVA content and the degree of deacetylation of chitosan. The best mechanical strength values of the blend fibers, 1.82 cN/d (dry state) and 0.81 cN/d (wet state), were obtained when PVA content was 20 wt % and the degree of deacetylation of chitosan was 90.2%. The strength of the blend fibers, especially wet tenacity could be improved further by crosslinking with glutaraldehyde. The water‐retention values (WRV) of the blend fibers were between 170 and 241%, obviously higher than pure chitosan fiber (120%). The structure analysis indicated that there are strong interaction and good miscibility between chitosan and poly(vinyl alcohol) molecular resulted from intermolecular hydrogen bonds. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2558–2565, 2001  相似文献   

9.
Carboxymethyl‐chitosan (CMCS)/poly(vinyl alcohol) (PVA) blend film was studied for an application as a coating material in the site‐specific drug delivery system. Films were prepared by blending varying amounts of 4 wt% CMCS with 4 wt% PVA, casting and drying at 50°C for 24 h. The cross‐sectional SEM micrograph of the film revealed that an increase in the amount of CMCS in the blend resulted in the film surface less smooth in the dry state and the network less uniform and more porous in the hydrated state, which became appreciable at 50%. The inclusion of CMCS in the blend also made the swelling of the films pH‐dependent, and lead to an increase in the degree of swelling with pH increase. When the permeation of three model drugs, salicylic acid, theophyline, and ornidazole, was studied using a static diffusion vessel, it followed a zero‐order kinetics and increased with an increase in the CMCS content in the blend, a decrease in the molecular weight of drug, an increase in the pH of medium, and a decrease in the film thickness. POLYM. ENG. SCI., 47:1373–1379, 2007. © 2007 Society of Plastics Engineers  相似文献   

10.
Blend films consisting of polyaniline in emeraldine base form (PANI EB) dispersed in partially cross‐linked carboxymethylchitin (CM‐chitin) were prepared by solution casting, and characterized for their physical, thermal, and electrical properties. Homogeneous and mechanically robust blend films were obtained having PANI EB contents up to 50 wt % in the CM‐chitin matrix. FTIR spectra confirm intimate mixing of the two blend components. The thermal stability of the blend films increased with increase of PANI EB content, suggesting the formation of an intermolecular interaction, such as hydrogen bonding, between PANI EB and CM‐chitin chains. The addition of PANI EB into the pure CM‐chitin film resulted in a decrease in electrical conductivity of the films owing to disruption of ionic conduction of the CM‐chitin structure. After doping the blend films by immersion in HCl solution, the electrical conductivity of the HCl‐doped films increased with increase of the PANI EB content to a maximum value of the order of 10?3 S/cm at 50 wt % PANI EB content. The electrical conductivity of the blend films was also dependent on the HCl concentration as well as on the type of acid dopant. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
To improve the mechanical and water vapor barrier properties of soy protein films, the transparent films were prepared by blending 5 wt % soy protein isolate (SPI) alkaline water solution with 2 wt % carboxymethylated konjac glucomannan (CMKGM) aqueous solution and drying at 30 °C. The structure and properties of the blend films were studied by infrared spectroscopy, wide‐angle X‐ray diffraction spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential thermal analysis, and measurements of mechanical properties and water vapor transmission. The results demonstrated a strong interaction and good miscibility between SPI and CMKGM due to intermolecular hydrogen bonding. The thermostability and mechanical and water vapor barrier properties of blend films were greatly enhanced due to the strong intermolecular hydrogen bonding between SPI and CMKGM. The tensile strength and breaking elongation of blend films increased with the increase of CMKGM content: the maximum values achieved were 54.6 MPa and 37%, respectively, when the CMKGM content was 70 wt %. The water vapor transmission of blend films decreased with the increase of CMKGM content: the lowest value achieved was 74.8 mg · cm?2 · d?1 when the CMKGM content was 70 wt %. The SPI–CMKGM blend films provide promising applications to fresh food packaging. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1095–1099, 2003  相似文献   

12.
Regenerated cellulose/chitin blend films (RCCH) were satisfactorily prepared in 6 wt % NaOH/4 wt % urea aqueous solution by coagulating with 5 wt % CaCl2 aqueous solution then treating with 1 wt % HCl. The structure, miscibility, and mechanical properties of the RCCH films were investigated by infrared, scanning electron microscopy, ultraviolet spectroscopies, X‐ray diffraction, tensile test, and differential scanning analysis. The results indicated that the blends were miscible when the content of chitin was lower than 40 wt %. Moreover, the RCCH blend film achieved the maximum tensile strength in both dry and wet states of 89.1 and 43.7 MPa, respectively, indicating that the tensile strength and water resistivity of the RCCH film containing 10–20 wt % chitin was slightly higher than that of the RC film unblended with chitin. Structural analysis indicated that strong interaction occurred between cellulose and chitin molecules caused by intermolecular hydrogen bonding. Compared to the mechanical properties of chitin film, those of the blend films containing 10–50 wt % chitin were significantly improved. This work provided a novel way to obtain directly chitin material blended in the aqueous solution. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1679–1683, 2002  相似文献   

13.
In order to enhance the mechanical properties of konjac glucomannan film in the dry state and research the application of konjac glucomannan on food preservation domain, blend transparent film was prepared by blending 3 wt % sodium alginate aqueous solution with 4.5 wt % konjac glucomannan aqueous solution and dried at 40oC for 4 h. The structure and properties of the blend films were studied by infrared, wide angle X‐ray diffraction, scanning electron microscopy, and differential thermal analysis. Crystallinities of blend films were increased with the increase of sodium alginate. The tensile strength and breaking elongation of the blend films in dry state were obviously higher than those of both sodium alginate and konjac glucomannan films. Tensile strength of the dry blend film achieved 77.8 MPa when the retention of sodium alginate in the film was 27.9 wt %. The structure analysis indicated that there was a strong interaction between konjac glucomannan and sodium alginate, and this is resulted from the intermolecular hydrogen bonds. Moisture content and degree of water swelling of the blend films were increased due to the introduction of sodium alginate. Results from the film coating preservation experiment to litchi and honey peach showed that this blend film had water‐holding ability. The fruit weight loss rate and rot rate both decreased by various values. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 617–626, 2000  相似文献   

14.
张良英  王碧  丁洪英  熊俊 《化学世界》2008,49(1):23-26,4
对魔芋葡甘聚糖进行羧甲基化改性,制得醚化度为0.54的羧甲基葡甘聚糖。再利用溶液共混法制备海藻酸钠-羧甲基葡甘聚糖共混膜,通过红外光谱、X-射线衍射、原子吸收光谱和扫描电镜对共混膜的结构进行了表征;并测定了不同配比共混膜的拉伸强度、断裂伸长率,吸水率和水蒸汽透过率,同时考察了NaCl浓度对共混膜吸水率的影响。结果表明:共混膜中海藻酸和羧甲基葡甘聚糖间具有较强的相互作用,良好的相容性。共混膜具有良好的力学性能,在生物材料领域有潜在利用价值。  相似文献   

15.
Films from castor oil‐based polyurethane (PU) prepolymer and nitroguar gum (NGG) with different contents (10–70 wt %) were prepared through solution casting method. The networks of PU crosslinked with 1,4‐butanediol were interpenetrated by linear NGG to form semi‐interpenetrating polymer networks (semi‐IPNs) in the blend films. The miscibility, morphology, and properties of the semi‐IPNs coded as PUNG films were investigated with Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, dynamic mechanical thermal analysis, wide‐angle X‐ray diffraction, density measurement, ultraviolet spectroscopy, thermogravimetric analysis, tensile, and solvent‐resistance testing. The results revealed that the semi‐IPNs films have good miscibility over the entire composition ratio of PU to NGG under study. The occurrence of hydrogen‐bonding interaction between PU and NGG played a key role in improvement of the material performance. Compared with the pure PU film, the PUNG films exhibited higher values of tensile strength (11.7–28.4 MPa). Meanwhile, incorporating NGG into the PU networks led to an improvement of thermal stability and better solvent‐resistance of the resulting materials. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104, 4068–4079, 2007  相似文献   

16.
Blend films of two types (I and II) were prepared by mixing Antheraea mylitta silk fibroin (AMF) and gelatin solution in various blend ratios via the solution casting method. Two different crosslinkers, namely glutaraldehyde and genipin, were used during blend preparation. The structural characteristics and thermal properties of the blend films were examined by Fourier transform infrared (FTIR) spectroscopy, X‐ray diffraction (XRD), Thermogravimetric analysis (TGA) and Diffrential scanning calorimetery (DSC). The FTIR spectra showed conformational alterations in type I blend films while type II films attained high β‐sheet crystallinity. The XRD diffractograms presented a high degree of crystallinity in type II blend films compared to type I, which showed an almost amorphous structure. Further, thermal and biological studies were conducted on type II films. According to the TGA thermograms, the degradation temperature of the crosslinked blend films shifted compared to pure gelatin and pure AMF films. Partial miscibility of the two components was indicated by DSC thermograms of the blends. The high water uptake capacity of type II blend films was found to imitate hydrogel behaviour. The blend films did not show any toxicity in 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) assay and supported L929 fibroblast cell spreading and proliferation. The biodegradation of the blend films was significantly faster than the pure silk film. © 2020 Society of Industrial Chemistry  相似文献   

17.
In the present investigation, attempt was made to prepare blend hydrogel by esterification of polyvinyl alcohol with gelatin. The blend hydrogel was further converted into films by the conventional solution‐casting method. These films were characterized by FTIR, DSC, and X‐ray diffraction studies. The refractive index and viscosity of different composition of the blends were measured in the solution phase of the material. The mechanical properties of the blend films were measured by tensile test. Swelling behavior of the blend hydrogel was also studied. The FTIR spectrum of the blend film indicated complete esterification of the free carboxylic group of gelatin. The DSC results indicate that the addition of gelatin with PVA changes the thermal behavior like melting temperature of PVA, which may be due to the miscibility of PVA with gelatin. The interaction of gelatin with PVA molecule changes the crystallite parameters and the degree of crystallinity. The crystallinity of the blend film was mainly due to gelatin. The comparison of viscosity indicated an increase in the segment density within the molecular coil. The results revealed the changes observed in the properties of the gel, and it enhances the gel formation at viscoelastic phase of the material. The blend film had sufficient strength and water‐holding capacity. The results obtained indicated that the blend film could be used for various biomedical applications such as wound dressing and drug‐delivery systems. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
Pure and blend films from chitosan (CH) and soy protein isolate (SPI) were produced in varying compositions (CH/SPI 75/25, 50/50, 25/75 w/w) based on the solvent type (acetic and formic acids). Glycerol was used as a plasticizer. The interactions between the two biopolymers was confirmed by FTIR and TGA, indicating miscibility and compatibility. Increasing the amount of soy protein decreased the tensile strength and absorptive properties, but improved the ability of the film to withstand thermal degradation. Blend films cast using acetic acid gave higher hydrophobicity, better internal blend miscibility, and better tensile properties than blend films cast from formic acid.  相似文献   

19.
Blends of poly (vinyl chloride) (PVC) and poly (methyl methacrylate) (PMMA) with varying concentrations of the polymers were prepared in a film form by standard solution casting method, using methyl ethyl ketone (MEK) as a common solvent. The miscibility of the blend was studied by dynamic mechanical analysis. The chain orientation behaviors of PVC and PMMA in the stretched blend films were studied by infrared dichroism method. Up to 60 wt % PVC concentration in the blend, PVC showed negative values for orientation function whereas PMMA showed independent positive values for its orientation function. On further increasing PVC concentration in the blend, the orientation function of PVC flipped to positive values, and both PVC and PMMA showed same magnitude and trend in orientation behavior. The chain orientation behavior of individual polymers in the immiscible compositions of the blend was observed to be independent, while there was a high degree of cooperation for chain orientation in the miscible composition. Change in the miscibility of the blend was simultaneously accompanied by conformational changes in PVC. The change in orientation behavior is interpreted in terms of curling of polymer chains in the immiscible phase. The polymer chain curling hypothesis used here is applicable independent of the type of polymers in the blend. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 624–630, 2006  相似文献   

20.
To precisely identify the effect of blend ratios of syndiotacticity‐rich poly(vinyl alcohol) (s‐PVA)/atactic PVA (a‐PVA) on the water stability of s‐PVA/a‐PVA/iodine complex blend films, we prepared two PVAs with similar number‐averaged degrees of polymerization of 4000 and degrees of saponification of 99.9% and with different syndiotactic diad contents of 58.5 and 53.5%, respectively. The desorption behavior of iodine in s‐PVA/a‐PVA/iodine complex films in water was investigated in terms of the solubility of s‐PVA/a‐PVA blend films in water. The degree of solubility of s‐PVA/a‐PVA blend films with s‐PVA content over 50% in water at 70°C was limited to about 10–20%, whereas that of s‐PVA/a‐PVA blend films with s‐PVA content of 10% was 85% under the same conditions. The degree of iodine desorption of complex blend films decreased with increasing s‐PVA content. The degree of iodine desorption of s‐PVA/a‐PVA drawn film with s‐PVA content of 90% was limited to 7%, regardless of the soaking temperature from 30 to 70°C. The desorption of iodine in water was strongly affected by the dissolution of blends. Moreover, the stability of iodine in the drawn s‐PVA/a‐PVA/iodine blend films in hot water was far superior to that of the undrawn film. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1435–1439, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号