首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiwall carbon nanotube reinforced poly (phenylene sulfide) (PPS) nanocomposites were successfully fabricated through melt compounding. Structural, electrical, thermal, rheological, and mechanical properties of the nanocomposites were systematically studied as a function of carbon nanotube (CNT) fraction. Electrical conductivity of the polymer was dramatically enhanced at low loading level of the nanotubes; the electrical percolation threshold lay between 1 and 2 wt % of the CNTs. Rheological properties of the PPS nanocomposites also showed a sudden change with the CNT fraction; the percolation threshold was in the range of 0–0.5 wt % of CNTs. The difference in electrical and rheological percolation threshold was mainly due to the different requirements needed in the carbon nanotube network in different stages. The crystallization and melting behavior of CNT‐filled PPS nanocomposites were studied with differential scanning calorimetry; no new crystalline form of PPS was observed in the nanocomposites, but the crystallization rate was reduced. The thermal and mechanical properties of the nanocomposites were also investigated, and both of them showed significant increase with CNT fraction. For 5 wt % of CNT‐filled PPS composite, the onset of degradation temperature increased by about 13.5°C, the modulus increased by about 33%, and tensile strength increased by about 172%. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
Adding conductive carbon fillers to thermoplastic polymers increases the resulting composite's electrical conductivity. Carbon black (CB) is very effective at increasing composite electrical conductivity at low loading levels. In this study, varying amounts (2 to 10 wt %) CB were added to polycarbonate (PC) and the resulting composites were tested for electrical conductivity (1/electrical resistivity), thermal conductivity, and tensile and flexural properties. These results were compared with prior work done for carbon nanotubes (CNT) in polycarbonate. The percolation threshold was ~ 2.3 vol % CB compared to between 0.7 and 1.4 vol % CNT. At 8 wt % filler, the CNT/PC composite had an electrical resistivity of 8 ohm‐cm compared to 122 ohm‐cm for the CB/PC composite. The addition of CB to polycarbonate increased the composite electrical and thermal conductivity and tensile and flexural modulus. The 8 wt % (5.5 vol %) CB in polycarbonate composite had a good combination of properties for semiconductive applications. Ductile tensile behavior is noted in pure polycarbonate and in samples containing up to 8 wt % CB. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
Adding conductive carbon fillers to insulating thermoplastic polymers increases the resulting composite's electrical conductivity. Carbon nanotubes (CNTs) are very effective at increasing composite electrical conductivity at low loading levels without compromising composite tensile and flexural properties. In this study, varying amounts (2–8 wt %) of CNTs were added to polycarbonate (PC) by melt compounding, and the resulting composites were tested for electrical conductivity (1/electrical resistivity), thermal conductivity, and tensile and flexural properties. The percolation threshold was less than 1.4 vol % CNT, likely because of CNTs high aspect ratio (1000). The addition of CNT to PC increased the composite electrical and thermal conductivity and tensile and flexural modulus. The 6 wt % (4.2 vol %) CNT in PC resin had a good combination of properties for electrical conductivity applications. The electrical resistivity and thermal conductivity were 18 Ω‐cm and 0.28 W/m · K, respectively. The tensile modulus, ultimate tensile strength (UTS), and strain at UTS were 2.7 GPa, 56 MPa, and 2.8%, respectively. The flexural modulus, ultimate flexural strength, and strain at ultimate flexural strength were 3.6 GPa, 125 MPa, and 5.5%, respectively. Ductile tensile behavior is noted in pure PC and in samples containing up to 6 wt % CNT. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Structure and properties of polymer compositions based on carbon nanotubes (CNTs) filled epoxy matrix containing fluorosilicone copolymers as additives is discussed. Electrical conductivity and dielectric (microwave) permittivity of the composites can be varied by approximately one order of magnitude without changing the CNT concentration, by careful selection of the additive type and concentration. The mutual solubility of the modifiers and epoxy is a key factor determining both rheological properties of the uncured compositions and electrical properties of cured CNT‐nanocomposites. CNT‐nanocomposites modified with amino‐functional (i.e., epoxy crosslinkable) copolymers demonstrate improved electrical conductivity values at increased additive concentration, connected with the formation of specific segregated microstructure. Fluorosilicone additives added in a specific amount also allow for a decrease of the viscosity of uncured epoxy CNT‐nanocomposites, improving their processability. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46539.  相似文献   

5.
The dispersion and stability of carbon nanotubes (CNTs) inside a polymer matrix, especially with a high CNT content, are still big challenges. Moreover, the interaction between CNTs and the polymer matrix should be strong enough to improve the mechanical properties. The efficient dispersion of CNTs is essential for the formation of a uniform distribution of a CNT network in a polymer composite. Polyimide/multiwall CNT nanocomposites were synthesized by in situ polymerization with the aid of a surfactant. A Fourier transform infrared spectroscopy study proved that the surfactant did not hamper the polymerization of the polyimide. The microstructure, storage modulus and electrical conductivity of the nanocomposites were improved using a particular amount of the surfactant. Environmental stability test results showed that the polyimide with 1 wt% of CNTs produced with the aid of the surfactant possessed excellent reliability in high‐temperature and high‐humidity environments. Surfactants were successfully used to obtain fine‐structure polyimide/CNT nanocomposites by in situ polymerization. The enhancement of the mechanical properties was attributed to the incorporation of the surfactant. A percolation of electrical conductivity could be achieved with 1 wt% of CNTs. Copyright © 2010 Society of Chemical Industry  相似文献   

6.
Young Seok Song 《Carbon》2005,43(7):1378-1385
Effects of different dispersion states of carbon nanotubes (CNTs) on rheological, mechanical, electrical, and thermal properties of the epoxy nanocomposites were studied. The dispersion states were altered depending upon whether a solvent was employed or not. To characterize dispersion of the CNTs, field emission scanning electron microscope (FESEM) and transmission electron microscopy (TEM) were used. It was found that the nanocomposites containing poorly dispersed CNTs exhibited higher storage modulus, loss modulus, and complex viscosity than ones with well dispersed CNTs. It means that the poorly dispersed CNTs/epoxy composites have, from a rheological point of view, a more solid-like behavior. Tensile strength and elongation at break of the nanocomposites with different dispersion of CNTs were measured. Both of the well and the poorly dispersed CNTs composites showed a percolation threshold of electrical conductivity at less than 0.5 wt.% CNTs loading and the former had higher electrical and thermal conductivities than the latter. Effects of the CNTs content on the physical properties were also examined experimentally. As loading of the CNTs increased, improved results were obtained. From the morphological observation by FESEM and TEM, it was found that when the solvent was not used in the CNTs dispersion process, aggregates of pristine CNTs remained in the nanocomposites.  相似文献   

7.
Masterbatch dilution was utilized to prepare polystyrene/carbon nanotubes (PS/CNT) nanocomposites for microinjection molding (µIM). The effect of processing parameters, such as injection velocity and melt temperature, on the microstructure and electrical conductivity of injection molded microparts was systematically investigated. The electrical conductivity of the microparts was measured in three perpendicular directions to determine anisotropy. Results showed that the measured conductivity is process‐dependent and melt temperature is the main factor that affects the electrical conductivity of the resultant samples. Electrical conductivity increased with an incremental loading fraction of CNT, and the percolation threshold shifted to higher filler loading concentration which was ascribed to the very high shear rate in µIM. In addition, Raman analysis, SEM observations, and simulation results indicated that CNT is preferentially oriented along the flow direction arising from the high shearing effect induced by µIM. POLYM. ENG. SCI., 56:1182–1190, 2016. © 2016 Society of Plastics Engineers  相似文献   

8.
Semi‐conducting polyethylene (PE) nanocomposites with outstanding magnetic properties at room temperature were synthesized. These exceptional properties, for a diamagnetic and insulating matrix as PE, were obtained by polymerizing ethylene in the presence of a catalytic system formed by a metallocene catalyst supported on a mixture of reduced graphene oxide (rGO) and carbon nanotubes with encapsulated iron (CNT‐Fe). It was used a constant and very low amount of CNT‐Fe, obtained by vapor chemical deposition using ferrocene. The percolation threshold, to achieve conductivity, was obtained using a variable amount of rGO. The nanocomposites were semiconductors with the addition of 2.8 wt % and 6.0 wt % of the filler, with electrical conductivities of 4.99 × 10?6 S cm?1 and 7.29 × 10?4 S cm?1, respectively. Very high coercivity values of 890–980 Oe at room temperature were achieved by the presence of only 0.04–0.06 wt % of iron in the nanocomposites. The novelty of this work is the production of a thermoplastic with both, magnetic and electric properties at room temperature, by the use of two fillers, that is rGO and CNT‐Fe. The use of a small amount of CNT‐Fe to produce the magnetic properties and variable amount of rGO to introduce the electrical conductivity in PE matrix let to balance both properties. The encapsulation strategy used to obtain Fe in CNT, protect Fe from easy oxidation and aggregation. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45382.  相似文献   

9.
In this article, we report on some properties of polymer nanocomposites prepared from dispersions of multiwall carbon nanotubes (CNT) in aqueous solution prepared using amphiphilic block copolymers. These nanocomposites are made of polyethylene oxide as matrix and CNT wrapped with copolymers as fillers. We investigated the rheological and electrical behavior of such composites with the objectives of underlined the effect of wrapping. Two rheological and only one electrical percolation thresholds have been observed and related to polymer–CNT and CNT–CNT networks. The low values of these percolation thresholds agree with a homogeneous dispersion of CNT in the matrix. We also demonstrated that specific wrapping may induce an increase of electrical conductivity without affecting too much the viscosity of the melt. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

10.
Conductive fillers are often added to thermoplastic polymers to increase the resulting composite's electrical conductivity (EC) which would enable them to be used in electrostatic dissipative and semiconductive applications. The resulting composite also exhibits increased tensile modulus. The filler aspect ratio plays an important role in modeling composite EC, and tensile modulus. It is difficult to measure the filler aspect ratio after the manufacturing process (often extrusion followed by injection molding) in the composite, especially when nanomaterials are used. The EC percolation threshold is a function of the filler aspect ratio; hence, knowledge of this percolation threshold provides a means to extract the filler aspect ratio. In this study, the percolation threshold of the composite was determined from EC measurements and modeling, which in turn was used to determine the filler aspect ratio for tensile modulus modeling. Per the authors' knowledge, this approach has not been previously reported in the open literature. The fillers; carbon black (CB: 2–10 wt %), multiwalled carbon nanotubes (CNT: 0.5–8 wt %), or exfoliated graphite nanoplatelets (GNP: 2–12 wt %); were added to polycarbonate (PC) and the resulting composites were tested for EC and tensile modulus. With the filler aspect ratio determined from EC values for CNT/PC and GNP/PC composites, the three‐dimensional randomly oriented fiber Halpin‐Tsai model accurately estimates the tensile modulus for the CNT/PC composites and the Nielsen model predicts the tensile modulus well for the CB/PC and GNP/PC composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
This study develops a facile approach to fabricate adhesives consists of epoxy and cost-effective graphene platelets (GnPs). Morphology, mechanical properties, electrical and thermal conductivity, and adhesive toughness of epoxy/GnP nanocomposite were investigated. Significant improvements in mechanical properties of epoxy/GnP nanocomposites were achieved at low GnP loading of merely 0.5?vol%; for example, Young’s modulus, fracture toughness (K1C) and energy release rate (G1C) increased by 71%, 133% and 190%, respectively compared to neat epoxy. Percolation threshold of electrical conductivity is recorded at 0.58?vol% and thermal conductivity of 2.13?W m?1 K?1 at 6?vol% showing 4 folds enhancements. The lap shear strength of epoxy/GnP nanocomposite adhesive improved from 10.7?MPa for neat epoxy to 13.57?MPa at 0.375?vol% GnPs. The concluded results are superior to other composites or adhesives at similar fractions of fillers such as single-walled carbon nanotubes, multi-walled carbon nanotubes or graphene oxide. The study promises that GnPs are ideal candidate to achieve multifunctional epoxy adhesives.  相似文献   

12.
Supramolecular crosslinked FeII‐terpyridine cellulose nanocrystals (Fe‐CTP) were prepared by surface modification of cellulose nanocrystals with 4′‐chloro‐2,2′:6′,2″‐terpyridine and subsequent reaction with Fe(II)SO4. The prepared complex was characterized using transmission electron microscopy (TEM), ultraviolet spectroscopy (UV), thermogravimetric analysis (TGA), and measuring its electrical properties at temperatures from 25 to 70°C. Use of Fe‐CTP at loadings from 1% to 10% (wt. ratio) in nanocomposites with polycaprolactone polymer was investigated; the nanocomposites were characterized regarding their electrical properties, which studied using broadband AC‐relaxation spectroscopy in the frequency range between 0.1 Hz and 1 MHz. The results were compared to that of PCL nanocomposites containing multiwalled carbon nanotubes (CNT). Variation in real and imaginary parts of permittivity has been explained on the basis of interfacial polarization of fillers in the polymer medium. The percolation limit of the conductive CNT and Fe‐CTP as studied by ac conductivity measurements has also been reported. Fe‐CTP showed conductivity values in the range of semiconductors. PCL/Fe‐CTP nanocomposites showed conductivity values from 1.98 × 10−11 to 3.76 × 10−6 while PCL/CNT nanocomposites showed conductivity values from 1.4 × 10−10 to 3.67 × 10−4 S/m for 1–10 wt% CNT content. POLYM. COMPOS., 37:2734–2743, 2016. © 2015 Society of Plastics Engineers  相似文献   

13.
Thermoplastic nanocomposites, based on high‐density polyethylene, polyamide 6, polyamide 66, poly(butylene terephthalate), or polycarbonate and containing multiwalled carbon nanotubes (CNTs), were compounded with either neat CNTs or commercial CNT master batches and injection‐molded for the evaluation of their electrical, mechanical, and thermal properties. The nanocomposites reached a percolation threshold within CNT concentrations of 2–5 wt %; however, the mechanical properties of the host polymers were affected. For some nanocomposites, better properties were achieved with neat CNTs, whereas for others, master batches were better. Then, polycarbonate and poly(butylene terephthalate), both with a CNT concentration of 3 wt %, were injection‐molded with a screening design of experiments (DOE) to evaluate the effects of the processing parameters on the properties of the nanocomposites. Although only a 10‐run screening DOE was performed, such effects were clearly observed. The volume resistivity was significantly dependent on the working temperature and varied up to 4 orders of magnitude. Other properties were also dependent on the processing parameters, albeit in a less pronounced fashion. Transmission electron microscopy indicated that conductive samples formed a percolation network, whereas nonconductive samples did not. In conclusion, injection‐molding parameters have a significant impact on the properties of polymer/CNT nanocomposites, and these parameters should be optimized to yield the best results. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Carbon fiber‐reinforced epoxy composites (CFEC) are fabricated infusing up to 0.40 wt % amino‐functionalized XD‐grade carbon nanotubes (XDCNT) using the compression molding process. Interlaminar shear strength (ILSS) and thermomechanical properties of these composites are evaluated through short beam shear and dynamic–mechanical thermal analysis tests. XDCNTs are infused into Epon 862 resin using a mechanical stirrer followed by sonication. After the sonication, the mixture was placed in a three roll milling processor for three successive cycles at 140 rpm for uniform dispersion of CNTs. Epikure W curing agent was then added to the resin using a high‐speed mechanical stirrer. Finally, the fiber was reinforced with the modified resin using the compressive mold. ILSS was observed to increase by 22% at 0.3 wt % XDCNT loading. Thermal properties, including storage modulus, glass transition temperature, and crosslink density demonstrated linear enhancement up to the 0.3 wt % XDCNT loading. Scanning electron microscopy revealed better interfacial bonding in the CNT‐loaded CFEC. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40709.  相似文献   

15.
A series of different carbon (carbon black, carbon nanotubes, and graphite nanoplatelets) filled polypropylene nanocomposites were prepared by melt blending, then followed by compression molding or microinjection molding (µIM). Direct current electrical conductivity measurements and melt rheology tests were utilized to detect the percolated structure for compression molded polypropylene/carbon nanocomposites. For µIM, a rectangular mold insert which has a three‐step decrease in thickness along the flow direction was adopted to study the effect of abrupt changes in mold geometry on the electrical and morphological properties of subsequent micromoldings (µ‐moldings). Results indicated that the µ‐moldings exhibited a higher percolation threshold when compared with their compression molded counterparts. This is largely due to the severe shearing conditions that prevail in the µIM process. The morphology of µ‐moldings containing different carbon fillers was examined using scanning electron microscopy. The development of corresponding microstructure is found to be strongly dependent on the types of carbon fillers used in µIM, which is crucial to the enhancement of electrical conductivity for the resulting µ‐moldings. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45462.  相似文献   

16.
This work evaluates the influence of two types of carbonaceous fillers, carbon black (CB) and carbon nanotubes (CNTs), on the electrical, electromagnetic, and rheological properties of composites based on poly(acrylonitrile‐co‐butadiene‐co‐styrene) (ABS) prepared by the melt mixing. Electrical conductivity, electromagnetic shielding efficiency (EMI SE) in the X‐band frequency range (8–12.4 GHz), and melt flow index (MFI) results showed that ABS/CNT composites exhibit higher electrical conductivity and EMI SE, but lower MFI when compared to ABS/CB composites. The electrical conductivity of the binary composites showed an increase of around 16 orders of magnitude, when compared to neat ABS, for both fillers. Binary composites with 5 and 15 wt % of filler showed an EMI SE of, respectively, ?44 and ?83 dB for ABS/CNT, and ?9 and ?34 dB for ABS/CB. MFI for binary composites with 5 wt % were 15.45 and 0.55 g/10 min for CB and CNT, respectively. Hybrid composites ABS/CNT.CB with 3 wt % total filler and fraction 50:50 and 75:25 showed good correlation between EMI SE and MFI. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46546.  相似文献   

17.
A systematic study of the reinforcement of single‐walled carbon nanotubes (SWNTs), multiwalled carbon nanotubes, and vapor‐grown carbon nanofibers (VGCNFs) in poly(methyl methacrylate) (PMMA) is reported. SWNT/PMMA composite films with various SWNT concentrations (from 0.5 to 50 wt % with respect to the weight of PMMA) were processed from nitromethane. Two types of SWNTs were used: SWNT‐A, which contained 35 wt % metal catalyst, and SWNT‐B, which contained about 2.4 wt % metal catalyst. Properties of different nanotubes containing composites were compared with 15 wt % carbon nanotubes (CNTs). Property enhancement included electrical conductivity, mechanical properties, and solvent resistance. The thermal degradation of PMMA in the presence of CNTs in air and nitrogen environments was studied. No variation in the thermal degradation behavior of PMMA/CNT was observed in nitrogen. The peak degradation temperature increased for the composites in air at low CNT loadings. Dynamic and thermomechanical properties were also studied. At a 35 wt % SWNT loading, a composite film exhibited good mechanical and electrical properties, good chemical resistance, and a very low coefficient of thermal expansion. Property improvements were rationalized in terms of the nanotube surface area. Composite films were also characterized with Raman spectroscopy. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
BACKGROUND: The effects of filler geometry are important for understanding the internal structure and physical properties of polymer composites. To investigate the effects of filler geometry on electrical conductivity as well as morphological and rheological properties, three types of polycarbonate (PC) composites were prepared by melt compounding with a twin‐screw extruder. RESULTS: The electrical conductivity of PC/carbon black (CB) and PC/graphite (carbon) nanofibre (CNF) composites did not show a percolation threshold through the entire filler loading ranges. However, PC‐blend‐carbon nanotube (CNT) composites showed a percolation electrical threshold for a filler loading of 1.0 to 3.0 wt% and their maximum electrical conductivity approached 10?3 S m?1. PC‐blend‐CB and PC‐blend‐CNF composites showed Newtonian behaviour like pure PC matrix, but PC‐blend‐CNT composites showed yield stress as well as increased storage modulus and strong shear thinning behaviour at low angular frequency and shear rate due to strong interactions generated between CNT–CNT particles as well as PC molecules and CNT particles on the nanometre scale. CONCLUSIONS: The electrical conductivity of the PC composites with different carbon constituents was well explained by the continuous network structure formed between filler particles. The network structure was confirmed by the good dispersion of fillers as well as by the yield stress and solid‐like behaviour observed in steady and dynamic shear flows. Copyright © 2009 Society of Chemical Industry  相似文献   

19.
Addition of small amounts (0.5-10 vol%) of multiwall carbon nanotubes (CNT) to thermoplastic elastomer Morthane produced polymer nanocomposites with high electrical conductivity (σ∼1-10 S/cm), low electrical percolation (?∼0.005) and enhancement of mechanical properties including increased modulus and yield stress without loss of the ability to stretch the elastomer above 1000% before rupture. In situ X-ray scattering during deformation indicated that these mechanical enhancements arise not only from the CNTs, but also from their impact on soft-segment crystallization. The deformation behavior after yielding of the nanocomposites, irrespective of CNT concentration, is similar to the unfilled elastomer, implying that the mechanistics of large deformation is mainly governed by the matrix. The relative enhancement of the Young's modulus of the nanocomposites is comparable to other elastomeric nanocomposites, implying that to the first order specific chemical details of the elastomeric system is unimportant.  相似文献   

20.
In this study, synergy between graphene platelets (GnPs) and carbon nanotubes (CNTs) in improving lap shear strength and electrical conductivity of epoxy composite adhesives is demonstrated. Adding two-dimensional GnPs with one-dimensional CNTs into epoxy matrix helped to form global three-dimensional network of both GnPs and CNTs, which provide large contact surface area between the fillers and the matrix. This has been evidenced by comparing the mechanical properties and electrical conductivity of epoxy/GnP, epoxy/CNT, and epoxy/GnP-CNT composites. Scanning electron microscopic images of lap shear fracture surfaces of the composite adhesives showed that GnP-CNT hybrid nanofillers demonstrated better interaction to the epoxy matrix than individual GnP and CNT. The lap shear strength of epoxy/GnP-CNT composite adhesive was 89% higher than that of the neat epoxy adhesive, compared with only 44 and 30% increase in the case of epoxy/GnP and epoxy/CNT composite adhesives, respectively. Electrical percolation threshold of epoxy/GnP-CNT composite adhesive is recorded at 0.41 vol %, which is lower than epoxy/GnP composite adhesive (0.58 vol %) and epoxy/CNT composite adhesive (0.53 vol %), respectively. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48056.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号