首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 502 毫秒
1.
Radiation‐induced grafting of styrene onto poly(tetrafluoroethylene) (PTFE) films was studied by a simultaneous irradiation technique. Grafting was carried out using γ‐radiation from a 60Co source at dose rates of 1.32–15.0 kGy h−1 at room temperature. The effects of type of diluent, dose rate, irradiation dose, and the initial monomer concentration in the grafting solution on the degree of grafting were investigated. The degree of grafting was found to be strongly dependent upon the grafting conditions. The dependence of the initial rate of grafting on the dose rate and the initial monomer concentration in the grafting solution was found to be in the order of 0.6 and 1.7, respectively. The chemical structure and the crystallinity of the grafted PTFE films were studied by means of Fourier‐transform infrared, (FTIR), electron spectroscopy for chemical analysis (ESCA) and X‐ray diffractometry (XRD). © 2000 Society of Chemical Industry  相似文献   

2.
Extraction or concentration with temperature‐sensitive hydrogels is a novel separation technology. In this study, N‐isopropylacrylamide (NIPA) was synthesized by acrylonitrile and isopropanol. Poly(N‐isopropylacrylamide) (PNIPA) and copolymer of NIPA and 2‐acrylamide‐2‐methylpropane sulfonate [P(NIPA‐co‐AMPS)] hydrogels were prepared by radiation polymerization. Dependence of their swelling behavior on temperature was studied. Effects of radiation dose on polymerization, feed composition on thermoresponse, electrolyte on relative swelling ratio, and swelling and deswelling kinetics were investigated. The experimental results showed that P(NIPA‐co‐AMPS) hydrogels with low content of AMPS/NIPA (1–5 %), prepared at a radiation dose‐rate of 1 kGy/h and total dose of 30–40 kGy, could enhance the swelling ratio of PNIPA hydrogels significantly and raise the phase‐transition temperatures. P(NIPA‐co‐AMPS) hydrogels produced under optimum conditions were used to concentrate aqueous bovine serum albumin (BSA, M = 69 000 g mol?1) solution. When aqueous BSA concentration was below 5 %, the separation efficiency was more than 80 % with low cost and low energy consumption. Copyright © 2005 Society of Chemical Industry  相似文献   

3.
The structure and mechanical properties of isotactic polypropylene (iPP) functionalized by electron beam irradiation are investigated by differential scanning calorimetry, wide‐angle X‐ray diffraction, thermogravimetry, thermomechanical analysis, melt index and mechanical measurements. The experimental results show that the degree of crystallinity, the thermal degradation temperature and the dimensional stability increase with dose in the range 0–5 kGy. At 5 kGy, the initial and final degradation temperatures of the irradiated iPP are raised by 66 °C and 124 °C, respectively. The melt index increases with increasing dose. The mechanical measurements show that the stiffness of iPP is greatly enhanced by electron beam irradiation. A small dose of irradiation (0.75 kGy) can increase the Young's modulus to 1284 MPa compared with 1112 MPa for unirradiated iPP. Adding 10 % by weight of irradiated iPP powder into iPP/talc (70/20 % by weight) blends, changes the processing parameters significantly and makes the Young's modulus rise substantially. At a dose of 40 kGy the Young's modulus of iPP/talc blend jumps to 3611 MPa against the original 2201 MPa. © 2000 Society of Chemical Industry  相似文献   

4.
The polymer/multiwalled carbon nanotube [poly(vinyl alcohol) (PVA)/carboxyethyl acrylate (CEA)]‐multiwalled carbon nanotube (MWCNT) and its amino functionalized (PVA/CEA)‐MWCNT‐NH2 nanocomposite samples were successfully synthesized by the chemical method in the form of films. The samples were irradiated with gamma‐ray doses of 50 and 100 kGy and with ion beam fluence of 2.5 × 1018 and 3.75 × 1018 ions cm?2. The prepared nanocomposite samples were characterized using X‐ray diffraction and thermogravimetric analysis. The X‐ray diffraction and thermogravimetric analysis confirm the existence of the chemical crosslinking occurred in the polymer compositions. The AC electrical conductivity, electrical modulus, dielectric constant, and dielectric loss in the frequency range 102–106 Hz are measured at room temperature. The electrical conductivity is increased with MWCNT doping, gamma‐irradiation, and by ion beam irradiation. A comprehensive analysis of the results revealed that dielectric properties are improved due to the induced physicochemical changes and conductive networks induced by ion beam irradiation. The behavioral effect of these embedded nanoparticles in a PVA matrix on the microstructural, dielectric, and electric properties is analyzed for possible device applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46647.  相似文献   

5.
Electron‐beam initiated crosslinking of a poly(vinyl chloride)/epoxidized natural rubber blend (PVC/ENR), which contained trimethylolpropane triacrylate (TMPTA), was carried out over a range of irradiation doses (20–200 kGy) and concentrations of TMPTA (1–5 phr). The gelation dose was determined by a method proposed by Charlesby. It was evident from the gelation dose, resilience, hysteresis, glass‐transition temperature (Tg), IR spectroscopy, and scanning electron microscopy studies that the miscible PVC/ENR blend underwent crosslinking by electron‐beam irradiation. The acceleration of crosslinking by the TMPTA was further confirmed in this study. Agreement of the results with a theory relating the Tg with the distance between crosslinks provided further evidence of irradiation‐induced crosslinking. The possible mechanism of crosslinking induced by the irradiation between PVC and ENR is also proposed. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1914–1925, 2001  相似文献   

6.
Nanocomposite polymer electrolytes (NCPE) were prepared using nano polyethylene oxide PEO doped with Magnesium (Mg) salts. Gamma irradiation was utilized to improve the PEO‐Mg salts particle sizes. Consequently, Magnesium Oxide (MgO) nanoparticles were prepared by green synthesis and incorporated into PEO‐Mg salts to improve their properties toward magnesium battery electrolyte applications. The prepared samples were examined before and after exposures to the radiation doses. Dynamic light scattering (DLS) indicated the particles size of the synthesized nano polymer‐Mg salts and MgO nanoparticles. Fourier transform infra‐red (FTIR) spectroscopic measurements, transmission electron microscopy (TEM), electrical conductivity, electrochemical properties, and thermal stability of the samples were determined. FTIR indicated the interaction between PEO with Mg salts and MgO nanoparticles which confirmed the structure. The TEM results showed a spherical nanoparticles of MgO and a good dispersion of MgO in PEO matrix. It was found that the irradiation dose 70 kGy gave the best results for the nano polymer‐Mg salts (13 nm). The electrical conductivity (σ) evaluated for NCPE, was more than three orders of magnitude of pure PEO. The liquid NCPE of 20 mL MgO NPs at 100 kGy exhibited a maximum conductivity of 3.63 × 10–3 Scm?1 at room temperature. The increase in temperature caused a slight effect on conductivity, 4.85 × 10–3 Scm?1 at temperature 250°C, at the same concentration. While un‐irradiated sample of 30 mL MgO NPs (σ) reached to 3.8 × 10?3 Scm?1 then became 5.03 × 10?3 Scm?1 by increasing temperature. From the cyclic voltammetry results, the polymer electrolytes containing MgO filler, 20 and 30 mL, for irradiated and un‐irradiated samples, respectively exhibited wider electrochemical stability window than the others due to the appearance of Mg deposition/desolution peak in CV curve showed that magnesium effectively migrating through electrolytes. Thermogravimetric analysis (TGA) was enhanced by adding Mg salts electrolyte and also MgO nanoparticles to PEO. J. VINYL ADDIT. TECHNOL., 25:243–254, 2019. © 2018 Society of Plastics Engineers  相似文献   

7.
The gamma radiation effect on polymethylvinylphenylsiloxane (PMVPS) rubbers is investigated by irradiation exposure of PMVPS rubbers to a maximum dose of 200 kGy in the temperature range 28–110 °C. Compared with unirradiated PMVPS rubber, the elongation at break of irradiated PMVPS rubber decreases while its elastic modulus increases with the increase of absorbed dose or radiation temperature. DSC, ATR‐FTIR, XPS, and 1H‐NMR indicate that slight degradation and oxidation reaction occur during the irradiation of PMVPS. Solvent swelling and gel fraction study confirms that the crosslinking density of PMVPS rubbers increases gradually with increasing absorbed dose or radiation temperature. Therefore, radiation‐induced crosslinking of PMVPS is dominant reactions for the chosen dose or temperature range. Furthermore, synergistic effect exists in the high‐temperature radiation process for PMVPS rubbers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45404.  相似文献   

8.
The electrical resistivity of low‐density polyethylene/carbon black composites irradiated by 60Co γ‐rays was investigated as a function of temperature. The experimental results obtained by scanning electron microscopy, solvent extraction techniques, and pressure‐specific volume‐temperature analysis techniques showed that the positive temperature coefficient (PTC) and negative temperature coefficient (NTC) effects of the composites were influenced by the irradiation dose, network forming (gel), and soluble fractions (sol). The NTC effect was effectively eliminated when the radiation dose reached 400 kGy. The results showed that the elimination of the NTC effect was related to the difference in the thermal expansion of the gel and sol regions. The thermal expansion of the sol played an important role in both increasing the PTC intensity and decreasing the NTC intensity at 400 kGy. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2742–2749, 2002  相似文献   

9.
Commercial Poly(methyl methacrylate) (PMMA) containing Tinuvin 622, a Hindered Amine Stabilizer (HAS), in 0.3% (wt/wt) concentration was investigated. The samples were irradiated with gamma radiation (60Co) at room temperature in air. The viscosity‐average molecular weight (Mv) was analyzed by viscosity technique. Both control PMMA (without HAS) and PMMA + 622 (with HAS) showed a decrease in molecular weight with the increase in dose, reflecting the random scissions that occurred in the main chain. The G value (scissions/100 eV of energy transferred to the system) was also obtained by viscosity analysis. G value results showed that the addition of Tinuvin 622 into the PMMA matrix significantly decreased the number of scissions/100 eV at dose range of 0–60 kGy. Analysis of infrared spectra showed a decrease in the carbonyl index (CI) in irradiated samples. However the CI decrease was found lower for PMMA + 622 than for control PMMA sample. Thermogravimetric analysis (TGA) revealed that maximum decomposition temperature of additive PMMA is 42°C higher than control PMMA for unirradiated system. On the other hand this difference is not significant in irradiated systems at 60‐kGy irradiation dose. The activation energy of the thermal degradation of PMMA was 165 kJ/mol, this activation energy increased 60 kJ/mol when Tinuvin 622 was added to PMMA matrix. Therefore Tinuvin 622 is a suitable radiostabilizing agent for commercial PMMA in a 0–60 kGy dose interval. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Electron‐beam initiated crosslinking of poly(vinyl chloride)/epoxidized natural rubber blends, which contained trimethylolpropane triacrylate (TMPTA), was carried out over a range of irradiation doses (20–200 kGy) and concentrations of TMPTA (1–5 phr). The gel content increased with the irradiation dose and the TMPTA level, although the increase was marginal at higher doses and higher TMPTA levels. Blends containing 3–4 phr TMPTA achieved optimum crosslinking, which in effect caused the maximum tensile strength (TS) at a dose of 70 kGy. A further addition of TMPTA caused a decline in the TS above 40 kGy that was due to embrittlement, which is a consequence of excessive crosslinking and the breakdown of the network structure. The possible formation of a more open network as a result of the breakdown of the network structure was further confirmed by the modulus results. Dynamic mechanical analysis (tan δ curve) and scanning electron microscopy studies on samples irradiated at 0 and 200 kGy were undertaken in order to gain further evidence on the irradiation‐induced crosslinking. The plasticizing effect of TMPTA prior to irradiation and the formation of microgels upon irradiation were also discussed. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1926–1935, 2001  相似文献   

11.
Poly(methyl methacrylate) (PMMA) was γ‐irradiated (5–20 kGy) by a 137Cs source at room temperature in air. The changes in the molecular structure attributed to γ‐irradiation were studied by mechanical testing (flexure and hardness), size‐exclusion chromatography, differential scanning calorimetry, thermal gravimetric analysis, and both Fourier transform infrared and solution 13C‐NMR spectroscopy. Scanning electron microscopy was used to investigate the influence of the dose of γ rays on the fracture behavior of PMMA. The experimental results confirm that the PMMA degradation process involves chain scission. It was also observed that PMMA presents a brittle fracture mechanism and modifications in the color, becoming yellowish. The mechanical property curves show a similar pattern when the γ‐radiation dose increases. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 886–895, 2002  相似文献   

12.
Waste newsprint paper was collected from the local market and subjected to chemical pulping using 2 M NaOH. The fiber, after getting rid of water, was treated again using 2 M HCl solution for the same time period. The obtained newsprint microfibers (NPFs) were characterized by using scanning electron microscopy (SEM), X‐ray diffraction (XRD), and Fourier transform infrared spectra. Then the dried and grounded NPF batch was mixed with ethylene propylene diene monomer (EPDM) rubber using different concentrations ranged from 5 to 50 phr. The prepared composites were irradiated by using gamma rays at different doses from 20 to 100 kGy. The mechanical properties of prepared EPDM/NPFs composites such as tensile strength (Ts), elongation at break (Eb%), tensile modulus (M100), toughness (Tt), and crosslink density (Cd) were measured as a function of fiber contents and irradiation dose. The results indicated that the tensile strength (Ts) increases with increasing microfibers contents up to 10 phr and irradiation dose up to 40 kGy, while Eb% decreases as the fibers content and irradiation dose increase. M100 and Cd values increase with increasing fibers content up 50 phr fibers and irradiation dose up to 60 kGy. The results also concluded that the toughness values of EPDM/NPFs composites reach its maximum degree when using 10 phr NPFs concentration and 60 kGy irradiation dose. J. VINYL ADDIT. TECHNOL., 25:198–212, 2019. © 2018 Society of Plastics Engineers  相似文献   

13.
The effect of gamma radiation on the thermal behavior and crystalline structure of low density polyethylene (LDPE) has been investigated using differential scanning calorimetry (DSC) and X‐ray diffraction techniques (XRD). Gamma irradiation was carried out in atmospheric air to a maximum dose of 883 kGy. DSC results of the heating run from room temperature up to 150 °C showed that the melting temperature (Tm), and onset temperature of LDPE film decrease linearly with increasing irradiation dose. However, upon cooling LDPE film from 150 °C to room temperature, the crystallization temperature (Tc) and onset temperature were found to decrease non‐linearly with increasing irradiation dose up to 500 kGy and then tended to level off. The change in heat of fusion (ΔHf) with irradiation dose was found to proceed with different behaviour, two stages, with a kink at irradiation dose of about 500 kGy, being observed. This suggests the occurrence of degradation and crosslinking at low and high doses, respectively. However, parameters of the X‐ray diffraction pattern such as number of diffraction patterns, peak position (2θ) and width of the diffraction pattern, support the results of DSC measurements. © 2000 Society of Chemical Industry  相似文献   

14.
The radiation‐induced crosslinking, compatibility, and surface modification of low density polyethylene/ethylene vinyl acetate blends (LDPE/EVA) were investigated. The structural and physical properties were characterized in terms of gel content, hot set, mechanical properties, contact angle, and surface free energy. The highest crosslink density was obtained at 20 wt % of EVA. Gel content of LDPE/EVA blends was increased with increasing irradiation dose, vinyl acetate (VA), and EVA contents. The hot set results are consistent with the gel content data. Mechanical testing showed that the tensile strength of samples increased with increasing irradiation dose up to 180 kGy, whereas the elongation at break was decreased with increasing irradiation dose. Contact angle measurements showed that the surface hydrophillicity of LDPE blend was increased with increasing irradiation dose and contents of both VA and EVA. The surface free energy was greatly dependent on irradiation dose and content of both VA and EVA. The total surface free energies of different LDPE formulations were in the range 17.25–32.51 mN/m, in which the polar (pσ) and disperse (dσs) values were within the range 16.52–26.6 and 0.9–5.91 mN/m, respectively. In conclusion, electron beam irradiation and blending LDPE with EVA improved the wettability or adhesion properties of LDPE/EVA blends. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

15.
The effect of trimethylolpropane triacrylate (TMPTA) monomer on the tensile properties, dynamic mechanical properties, and morphology of irradiated epoxidized natural rubber (ENR‐50), ethylene‐(vinyl acetate) copolymer (EVA), and an ENR‐50/EVA blend was investigated. The ENR‐50, EVA, and ENR‐50/EVA blend were irradiated by using a 3.0‐MeV electron‐beam apparatus at doses ranging from 20 to 100 kGy. The improvement of tensile properties and morphology with irradiation indicated the advantage of having irradiation‐induced crosslinks in these materials. Observation of the properties studied confirmed that TMPTA was efficient in enhancing the irradiation‐induced crosslinking of ENR‐50, EVA, and the ENR‐50/EVA blend. Addition of TMPTA improved the adhesion between the ENR‐50/EVA blend phases by forcing grafting and crosslinking at a higher irradiation dose (100 kGy). J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers.  相似文献   

16.
Chitosan is a biodegradable polymer composed of randomly distributed β‐(1,4)‐linked D ‐glucosamine (deacetylated unit) and N‐acetyl‐D ‐glucosamine (acetylated unit). It is produced commercially by deacetylation of chitin, which is the structural element in the exoskeleton of crustaceans (such as crabs and shrimps) and the cell walls of fungi. In the work reported, we developed a facile technique for the preparation of chitosan by irradiating prawn shell at various intensities from 2 to 50 kGy. It was observed that γ‐irradiation of prawn shell increased the degree of deacetylation (DD) of chitin at a relatively low alkali concentration during the deacetylation process. Among the various irradiation doses applied to prawn shell, a dose of 50 kGy and 4 h heating in 50% NaOH solution yielded 84.56% DD while the chitosan obtained from non‐irradiated prawn shell with the same reaction conditions had only 74.70% DD. In order to evaluate the effect of γ‐irradiation on the various physicochemical, thermomechanical and morphological properties, the chitosan samples were again irradiated (2–100 kGy) with γ‐radiation. Molecular weight, DD, thermal properties with differential scanning calorimetry and thermogravimetric analysis, particle morphology by scanning electron microscopy, water binding capacity (WBC), fat binding capacity (FBC) and antimicrobial activity were determined and the effects of various γ‐radiation doses were assessed. The DD, WBC, FBC and antimicrobial activity of the chitosan were found to improve on irradiation. It was obvious that irradiation caused a decrease of molecular weight from 187 128 to 64 972 g mol?1 after applying a radiation dose of 100 kGy which occurred due to the chain scission of chitosan molecules at glycosidic linkages. The decrease of molecular weight increased the water solubility of the chitosan, the extent of which was explored for biomedical applications. Copyright © 2012 Society of Chemical Industry  相似文献   

17.
Electron‐beam (E‐Beam) curing of an epoxy polymer matrix and its composite (reinforced with IM7 Carbon fibers) was studied using a cationic photoinitiator. Photoinitiator concentration, dose, and process temperature were varied to understand their influence on E‐beam curing. Optimal photoinitiator concentration was found to be 5 phr. The curing was due to a primary α reaction with a strong dependence on dose, and a secondary β reaction with a weak dependence on dose and a strong dependence on initiator concentration. The extent of cure increased rapidly with dose until 100 kGy and it approached a plateau value beyond 100 kGy. This plateau value corresponded to incomplete curing by 27% for resin and 22% for composite at a process‐temperature of 22°C. The causes for incomplete curing appear to be the secondary β reaction and diffusional limitation. Increase in process temperature resulted in higher extent of cure at a dose level. The material used in this study was also found to be thermally curable and the reaction onset temperature (measured in a DSC ramp experiment) reduced from about 150°C at 0 kGy to about 50°C at 30 kGy. This indicates that simultaneous thermal curing during E‐beam curing of resin and composite is possible. After thermal post‐curing, the Tg of the E‐beam cured resin increased from 130°C at 200 kGy to a value greater than 370°C and the modulus decreased by 10%. The service temperature and the modulus of the 100% thermally cured resin and the thermally post‐cured (after E‐Beam irradiation) resin were comparable.  相似文献   

18.
The surface morphology, chemical, optical, and structural response of 1.25 MeV gamma rays irradiation at various doses ranging from 16 to 300 kGy on Kapton polymer samples were studied by using scanning electron microscope (SEM), Fourier Transform Infrared (FTIR), ultraviolet/visible absorption (UV/VIS) and X‐ray diffraction (XRD). The morphology study shows the blisters formation on the Kapton polymer surface due to 1.25 MeV gamma rays irradiation at ambient temperature. This observation provides a basis for the quantitative evaluation of FTIR results obtained for thermally stable polymer on the chemical bond deterioration with increasing gamma irradiation. The blistering mechanism is correlated with the internal gases (CO, H2) released due to gamma radiation induced damages. The recorded UV–VIS spectrum shows a maximum absorption around the wavelength 540 nm. However, the nature of the spectra does not change due to gamma irradiation but a shift in absorption edge towards the higher wavelength side has been observed with increasing dose. The optical data shows an increase in the calculated band gap at the highest dose. The diffraction pattern of virgin sample shows that polymer is semicrystalline, but due to irradiation, a decrease in the peak intensity and FWHM and an increase in the crystallite size at the highest dose level of 300 kGy have been observed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
Trimethylolpropane trimethylacrylate/Ultra high molecular weight polyethylene (TMPTMA/UHMWPE) composite and pure UHMWPE plates were made by compression molding and electron beam (EB) irradiation crosslinking methods. Fourier transform infrared spectroscopy (FTIR), Soxhlet extractor, electromechanical tester, and wear tester were used for the characterization of the structure, mechanical properties, and tribological performance of the crosslinked UHMWPE. FTIR analyses show that trans‐vinylene (965 cm?1) absorption increases with the increasing dose and the trans‐vinylene intensity of TMPTMA/UHMWPE is higher than that of UHMWPE at the same dose, and Soxhlet experiments reveal that gel fraction increases with the increasing dose, both proving that crosslinking took place in all the irradiated samples. The results of the tensile tests indicate a significant decrease in elongation at break, but the stress of UHMWPE increases to 47 MPa at 10 kGy and then decreases with the increasing dose. The stress of TMPTMA/UHMWPE composites keeps at about 39 MPa before 50 kGy and then decreases with the increasing dose because of plasticization effect. The stress changes indicate that crosslinking and degradation occurred at the same time. Wear rate of 100 kGy 1% TMPTMA/UHMWPE is 1.76 × 10?7mg/Nm, only 23.5% of wear rate of 0 kGy UHMWPE and 44.2% of wear rate of 100 kGy UHMWPE. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
Different crosslinked high‐density polyethylene based cellular polymers have been produced by a free foaming process using a chemical blowing agent. The polymer matrix was crosslinked by electron beam irradiation using different doses ranging from 25 to 175 kGy. The main aim of this work is to study the effect of the different irradiation doses on the density, cellular structure, and foaming mechanisms. Results show that irradiation doses as high as 175 kGy have to be used to obtain cellular materials with a low relative density (0.06), cell sizes of around 50 μm, and cell densities of 1.6 × 107 cells cm?3. The strain hardening of the polymer matrix increases with the irradiation dose leading to an increase of the polymer resistance to be stretched, which helps to avoid undesirable cellular degeneration processes. Irradiation doses lower than 175 kGy are not able to stabilize the cellular structure leading to foams with relative densities higher than 0.1 and degenerated cellular structures. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46276.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号