首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dehydration of methyl ricinoleate by heatingin vacuo in the presence of KHSO4 resulted in the formation of the following conjugated octadecadienoates expressed as a percentage of the final product:cis, trans (trans, cis), 14.3;cis, cis, 11.2;trans, trans, 7.3. The isomers contained the double bonds predominantly in the 9,11 position but the possible presence of traces of 8,10 and other conjugated isomers is not excluded. Using urea “inclusion” fractionation and low temp crystallization from acetone methyl,cis-9,cis-11-octadecadienoate was isolated. The methyl esters of commercially dehydrated castor oil fatty acids on the other hand, contained the following percentages of conjugated octadecadienoate isomers:cis, trans (trans, cis), 20.3;cis, cis, 8.0;trans, trans, 5.4. From these mixtures conc ofcis, trans (trans, cis)- andtrans, trans-octadecadienoates were prepared by fractional distillation and low temp crystallization. It was found that the conjugated octadecadienoates consisted of mixtures of positional isomers with double bonds mainly in the 8,10 and 9,11 positions with lesser amounts in the 7,9 and 10,12 positions.  相似文献   

2.
Conjugated linoleic acid (CLA) mixtures were isomerized with p-toluenesulfinic acid or I2 catalyst. The resultant mixtures of the eight cis/trans geometric isomers of 8,10-, 9,11-, 10,12-, and 11,13-octadecadienoic (18∶2) acid methyl esters were separated by silver ion-high-performance liquid chromatography (Ag+-HPLC) and gas chromatography (GC). Ag+-HPLC allowed the separation of all positional CLA isomers and geometric cis/trans CLA isomers except 10,12–18∶2. However, one of the 8,10 isomers (8cis, 10trans-18∶2) coeluted with the 9trans,11cis18∶2 isomer. There were differences in the elution order of the pairs of geometric CLA isomers resolved by Ag+-HPLC. For the 8,10 and 9,11 CLA isomers, cis,trans eluted before trans,cis, whereas the opposite elution pattern was observed for the 11,13–18∶2 geometric isomers (trans,cis before cis,trans). All eight cis/trans CLA isomers were separated by GC on long polar capillary columns only when their relative concentrations were about equal. Large differences in the relative concentration of the CLA isomers found in natural products obscured the resolution and identification of a number of minor CLA isomers. In such cases, GC-mass spectrometry of the dimethyloxazoline derivatives was used to identify and confirm coeluting CLA isomers. For the same positional isomer, the cis,trans consistently eluted before the trans,cis CLA isomers by GC. High resolution mass spectrometry (MS) selected ion recording (SIR) of the molecular ions of the 18∶1 18∶2, and 18∶3 fatty acid methyl esters served as an independent and highly sensitive method to confirm CLA methyl ester peak assignments in GC chromatograms obtained from food samples by flame-ionization detection. The high-resolution MS data were used to correct for the nonselectivity of the flame-ionization detector.  相似文献   

3.
Silver-ion high-performance liquid chromatography was used to fractionate a mixture of conjugated linoleic acid (CLA) isomers (as the free fatty acids, CLAFFA) in commercial CLA mixtures and biological samples. Due to the unchanged retention mechanism, it was assumed that the elution order of the isomers remained the same as that of methyl esters separated on the same column. The most abundant isomers, cis/trans 10,12-18:2 and cis/trans 9,11-18:2, were separated better as free acids on a single column than in the methyl ester form. Quantification of the CLA standard was used as the reference profile to evaluate different methylation methods commonly used to prepare CLA methyl esters for quantitation. Acid- and vuigi base-catalyzed derivatization methods resulted in CLA intraisomerization and losses in total conjugated dienes content. Acid (HCl and BF3) methylations significantly elevated the level of trans,trans isomers and significantly reduced the cis/trans isomers. Base methylation, tetramethylguanidine/methanol, resulted in loss of trans,trans isomers, and a substantial loss of total underivatized conjugated dienes. Other catalysts such as the trimethylsilyldiazomethane produced additional peaks of unidentified artifacts. The analysis of CLAFFA appears to provide more accurate quantification of CLA isomers in commercial and biological samples.  相似文献   

4.
A high-performance liquid chromatographic (HPLC) method is described for the determination of conjugated linoleic acids (CLA) and conjugated linolenic acids (CLN). Methyl esters prepared from purified lipid fractions of soybean oil were analyzed using an HPLC system equipped with photodiode-array detector to detect peaks having maximum absorption around 233 and 275 nm. These peaks were concentrated by AgNO3-silicic acid column chromatography and reversed-phase HPLC. The structural analysis, of dimethyloxazoline (DMOX) derivatized methyl esters, using gas chromatography–mass spectrometry (GC–MS) showed the occurrence of 9,11- and 10,12-CLA and 8,10,13-, 8,10,12-, and 9,11,13-CLN. The comparison of these conjugated fatty acids with authentic isomers by HPLC revealed the presence of isomeric mixtures of CLA [cis (c),trans(t) or t,c and t,t] and CLN (c,t,t or t,t,c and t,t,t). Traces of 9,11- and 10,12-CLA (c,t or t,c) were found in crude oil. CLN isomers (8,10,12-18:3 and 9,11,13-18:3) were found to be forming during the bleaching phase of soybean oil processing. 8,10,13-CLN and 9,11- and 10,12-CLA (t,t) were only found in soybean oil after the deodorization step. CLN contents in commercial soybean oil varied from 387 to 1,316 mg/kg oil. A decreased level of bleaching earth and temperature resulted in a reduced CLN content. It is possible that CLN would be derived from the linoleate hydroperoxides formed during the processing and storage of soybean oil.  相似文献   

5.
Chemical pathways responsible of the conjugation of linoleic acid during heat treatments such as refining (deodorization), frying or cooking processes have been investigated. For this purpose, methyl linoleate was submitted to oxidative and non‐oxidative thermal conditions. The resulting degradation products were mainly composed of geometrical and conjugated fatty acid isomers. Oxidative conditions were obtained using tert‐butyl hydroperoxide under inert atmosphere, and air. The obtained results from both thermal oxidative conditions were compared to non‐oxidative thermal treatment. Higher levels of conjugated linoleic acid were found when linoleate was heated under oxidative conditions. Two distinct mechanisms responsible for the formation of CLA isomers are proposed and discussed. Evidence of formation of 9,11‐C18:2 and 10,12‐C18:2 acids from 9,12‐C18:2 by a free‐radical chain reaction is provided. The first step consists in the formation of a free radical by abstraction of an active bis‐allylic hydrogen. By delocalization of the initial free radical, two allylic free radicals were stabilized and converted into the corresponding CLA isomers via the abstraction of a hydrogen radical from other linoleic acid or oxygenated species. Kinetic observations confirmed the significance of the bimolecular mechanism. Moreover, the proposed mechanism is supported by several pieces of information from the literature on peroxidation of linoleic acid. Under pure thermal conditions and/or for diluted samples, a second pathway to the formation of CLA from heat‐treated linoleic acid is proposed via an intramolecular rearrangement of the pentadienyl structure. This thermal [1,3]‐sigmatropic rearrangement results in a mixture of 9,11 and 10,12 CLA isomers. The formed cis/trans CLA isomers were readily rearranged by a [1,5]‐sigmatropic shift to yield trans‐8,cis‐10 and cis‐11,trans‐13 CLA isomers, respectively.  相似文献   

6.
Octadecadienoic acids with conjugated double bonds are often referred to as conjugated linoleic acid, or CLA. CLA is of considerable interest because of potentially beneficial effects reported from animal studies. Analysis of CLA is usually carried out by GC elution of FAME. If the presence of low-level isomers is of interest, a complementary technique such as silverion HPLC is also used. These analyses have been hindered by a lack of well-characterized commercially available reference materials. Described here are the synthesis and isolation of selected 6,8-through 13,15-positional CLA isomers, followed by isomerization of these CLA isomers with iodine to produce all the possible cis,cis,cis,trans,trans,cis, and trans,trans combinations. Also present are the GC retention times of the CLA FAME relative to γ-linolenic acid (6c,9c,12c-octadecatrienoic acid) FAME using a 100-m CP Sil-88 capillary column (Varian Inc., Lake Forest, CA). These data include all the CLA isomers that have been identified thus far in foods and dietary supplements and should greatly aid in the future analysis of CLA in these products.  相似文献   

7.
Commercial cheese products were analyzed for their composition and content of conjugated linoleic acid (CLA) isomers. The total lipids were extracted from cheese using petroleum ether/diethyl ether and methylated using NaOCH3. The fatty acid methyl esters (FAME) were separated by gas chromatography (GC), using a 100-m polar capillary column, into nine minor peaks besides that of the major rumenic acid, 9c, 11t-octadecadienoic acid (18∶2), and were attributed to 19 CLA isomers. By using silver ion-high performance liquid chromatography (Ag+-HPLC), CLA isomers were resolved into seven trans, trans (5–9%), three cis/trans (10–13%), and five cis, cis (<1%) peaks, totaling 15, in addition to that of the 9c, 11t-18∶2 (78–84%). The FAME of total cheese lipids were fractionated by semipreparative Ag+-HPLC and converted to their 4,4-dimethyloxazoline derivatives after hydrolysis to free fatty acids. The geometrical configuration of the CLA isomers was confirmed by GC-direct deposition-Fourier transform infrared, and their double bond positions were established by GC-electron ionization mass spectrometry. Reconstructed mass spectral ion profiles of the m+2 allylic ion and the m+3 ion (where m is the position of the second double bond in the parent conjugated fatty acid) were used to identify the minor CLA isomers in cheese. Cheese contained 7 t,9c-18∶2 and the previously unreported 11t, 13c-18∶2 and 12c, 14t-18∶2, and their trans,trans and cis,cis geometric isomers. Minor amounts of 8,10-, and 10, 12–18∶2 were also found. The predicted elution orders of the different CLA isomers on long polar capillary GC and Ag*-HPLC columns are also presented.  相似文献   

8.
This research demonstrates the gas chromatographic analysis of the 4-methyl-1,2,4-triazoline-3,5-dione (MTAD) adducts derived from standards of cis,trans-9,11-octadecadienoic acid, trans,trans-9,11-octadecadienoic acid, and cis,cis-9,11-octadecadienoic acid. Methyl cis,trans-9,11-octadecadienoate and methyl trans,trans-9,11-octadecadienoate formed Diels-Alder addition products with MTAD to produce adducts with similar mass spectral fragmentation patterns but different retention times determined by gas chromatography/ mass spectrometry. Methyl cis,cis-9,11-octadecadienoate reacted slowly and produced two adducts with similar fragmentation patterns and different retention times. These results were comparable to those reported for an analogous series of conjugated hexadienes. Based on hexadiene reactions, methyl cis,trans-9,11-octadecadienoate produced a trans adduct as a major product while methyl trans,trans-9,11-octadecadienoate formed a cis adduct. Methyl cis,cis-9,11-octadecadienoate reacted slowly under the conditions used leaving mostly unreacted material. Of the adducts observed from this isomer, a major trans adduct and a minor cis adduct were formed.  相似文献   

9.
The fatty acid composition of 39 mature human milk samples from four Spanish women collected between 2 and 18 weeks during lactation was studied by gas chromatography. The conjugated linoleic acid (CLA) isomer profile was also determined by silver‐ion HPLC (Ag+‐HPLC) with three columns in series. The major fatty acid fraction in milk lipids throughout lactation was represented by the monounsaturated fatty acids, with oleic acid being the predominant compound (36–49% of total fatty acids). The saturated fatty acid fraction represented more than 35% of the total fatty acids, and polyunsaturated fatty acids ranged on average between 10 and 13%. Mean values of total CLA varied from 0.12 to 0.15% of total fatty acids. The complex mixture of CLA isomers was separated by Ag+‐HPLC. Rumenic acid (RA, cis‐9 trans‐11 C18:2) was the major isomer, representing more than 60% of total CLA. Trans‐9 trans‐11 and 7‐9 (cistrans + transcis) C18:2 were the main CLA isomers after RA. Very small amounts of 8‐10 and 10‐12 C18:2 (cis‐trans + trans‐cis) isomers were detected, as were different proportions of cis‐11 trans‐13 and trans‐11 cis‐13 C18:2. Although most of the isomers were present in all samples, their concentrations varied considerably.  相似文献   

10.
This is the first report of the application of silverion impregnated high-performance liquid chromatography (Ag+-HPLC) to the separation of complex mixtures of conjugated linolenic acid (CLA) isomers present in commercial CLA sources and foods and in biological specimens. This method showed a clear separation of CLA isomers into three groups related to their trans,trans, cis,trans or trans,cis, and cis,cis configuration of the conjugated double-bound system. In addition, this method separated within each geometrical isomeric group. Following Ag+-HPLC isolation, gas chromatography (GC)-electron impact mass spectrometry, and GC-direct deposition-Fourier transformed infrared spectroscopy were used to confirm the identity of two major positional isomers in the cis/trans region, i.e., Δ8,10- and Δ11,13-octadecadienoic acid, which had not been chromatographically resolved previously, Furthermore, the potential of this method was demonstrated by showing different Ag+-HPLC profiles exhibiting patterns of isomeric distributions for biological specimens from animals fed a diet containing a commerical CLA preparation, as well as for a commerical cheese product.  相似文献   

11.
The objective of this study was to identify oxidation products of conjugated linoleic acid (CLA), a series of octadecadienoic acids with conjugated double bonds, which have been reported to have antioxidant and anticarcinogenic properties. Reference materials of CLA were oxidized in different concentrations of water/methanol; for example, 0.5 g octadecadienoic acid was dissolved in 50 mL methanol, and 100 mL water was added; this suspension was heated at 50°C and continuously aerated. Aliquots of 5 mL were taken over time, extracted with ether, treated with diazomethane and examined by gas chromatography/mass spectrometry and/or gas chromatography with flame-ionization detection. Products identified included the following furan fatty acids (FFAs): 8,11-epoxy-8,10-octadecadienoic; 9,12-epoxy-9,11-octadecadienoic; 10,13-epoxy-10,12-octadecadienoic; and 11,14-epoxy-11,13-octadecadienoic. Conjugated dienes should be considered as a possible source of FFAs, and CLA may have products common to furans in their overall oxidative scheme.  相似文献   

12.
Hydrogen sulfide was added to methyltrans, trans- 9,11-octadecadienoate in benzene solution at 25 C with ultraviolet radiation. GC-MS and GLC analysis of the reaction product showed the presence of methyl oleate, methyl stearate, geometric isomers of methyl 9,11-octadecadienoate, methyl 9,12-epoxy-octadeca-9, 11-dienoate, an unknown compound with an apparent molecular weight of 306, methyl 8-(2′,5′-hexylthienyl) octanoate, an unidentified sul-fur ] containing C18 ester with an apparent molecular weight of 326, methyl 9,12-epithiostearate, an adduct of methyltrans,trans- 9,11-octadecadienoate and ben-zene [bicyclo (4.4.0)-deca-2,5,7-triene-l-(Ω-carboxy-methyl heptyl)-4 hexyl] and a probable mixture of methyl 9,11-epidithiostearate, methyl 9,12-epidithio-stearate, and methyl 10,12-epidithiostearate.  相似文献   

13.
Position and configuration isomers of conjugated linoleic acid (CLA), from 7, 9‐ through 12, 14‐C18:2, were synthesized by directed sequential isomerizations of a mixture of rumenic (cis‐9, trans‐11 C18:2) and trans‐10, cis‐12 C18:2 acids. Indeed, the synthesized conjugated fatty acids cover the range of unsaturated systems as found in milk fat CLA. The two‐step sequence consisted in initial sigmatropic rearrangement of cis/trans CLA isomers at 200 °C for 13 h under inert atmosphere (Helium, He), followed by selenium‐catalyzed geometrical isomerization of double bonds at 120 °C for 20 h under He. Product analysis was achieved by gas‐liquid chromatography using a 120 m polar capillary column coated with 70% cyanoalkylpolysiloxane equivalent polymer. Migration of conjugated systems was geometrically controlled as follows: the cis‐Cn, trans‐Cn+2 double bond system was rearranged through a pericyclic [1, 5] sigmatropic mechanism into a trans‐Cn‐1, cis‐Cn+1 unsaturated system, while the trans‐Cn, cis‐Cn+2 double bond system was rearranged through a similar pericyclic mechanism into a cis‐Cn+1, trans‐Cn+3 unsaturated system. Selenium‐catalyzed geometrical isomerization under mild conditions then allowed cis/trans double bond configuration transitions, resulting in the formation of all cis, all trans, cis‐trans and trans‐cis isomers. A sequential combination of the two reactions resulted in a facile controlled synthesis of CLA isomers, useful for the chromatographic identification of milk fat CLA, as well as for the preparation of CLA standard mixture.  相似文献   

14.
The weight loss supplement conjugated linoleic acid (CLA) consists of an equal mixture of trans-10,cis-12 (10,12) and cis-9,trans-11 (9,11) isomers. However, high levels of mixed CLA isomers, or the 10,12 isomer, causes chronic inflammation, lipodystrophy, or insulin resistance. We previously demonstrated that 10,12 CLA decreases de novo lipid synthesis along with the abundance and activity of stearoyl-CoA desaturase (SCD)-1, a δ-9 desaturase essential for the synthesis of monounsaturated fatty acids (MUFA). Thus, we hypothesized that the 10,12 CLA-mediated decrease in SCD-1, with the subsequent decrease in MUFA, was responsible for the observed effects. To test this hypothesis, 10,12 CLA-treated human adipocytes were supplemented with oleic acid for 12?h to 7?days, and inflammatory gene expression, insulin-stimulated glucose uptake, and lipid content were measured. Oleic acid reduced inflammatory gene expression in a dose-dependent manner, and restored the lipid content of 10,12 CLA-treated adipocytes without improving insulin-stimulated glucose uptake. In contrast, supplementation with stearic acid, a substrate for SCD-1, or 9,11 CLA did not prevent inflammatory gene expression by 10,12 CLA. Notably, 10,12 CLA impacted the expression of several G-protein coupled receptors that was attenuated by oleic acid. Collectively, these data show that oleic acid attenuates 10,12 CLA-induced inflammatory gene expression and lipid content, possibly by alleviating cell stress caused by the inhibition of MUFA needed for phospholipid and neutral lipid synthesis.  相似文献   

15.
高纯度共轭亚油酸的规模化制备及其异构体的鉴定   总被引:3,自引:0,他引:3       下载免费PDF全文
Conjugated linoleic acid(CLA)is a kind of fatty acid with physiological activities and potential appli-cation prospect ,A synthesis method of conjugated linoleic acid and a purification technology were studied .CLA was prepared and purified by urea-complexation and conjugation using safflower oil as raw material,The purity of CLA and total recovery of the product was more than 95% and 48%,respectively,The main isomers produced in alkali-catalyzed conjugation were identified by gas chromatography (GC)linked to mass spectrometry(MS) and Fourier transform infrared spectroscopy(FTIR),The total amount of the two main isomers (9cis,11trans-and 10trans,12cis-CLA) determined by GC was more than 90% of the product.  相似文献   

16.
Heat treatment of sunflower oil resulted in the formation of linoleic geometrical and positional isomers. These isomers were isolated using a combination of column chromatography, urea fractionation, high performance liquid chromatography (HPLC) on a C18 reverse phase column and silver nitrate thin layer chromatography (TLC). Each component was submitted to hydrazine reduction and the resulting monoenes to AgNO3-TLC. The resultingcis andtrans fractions were submitted to ozonolysis in BF3-MeOH in order to determine the position of the ethylenic bonds. The major isomers were thecis, trans andtrans, cis 18∶2 Δ9, 12, thetrans, trans 18∶2 Δ9, 12 and somecis, trans, trans, cis andtrans, trans 18∶2 conjugated dienes. Thecis, trans andtrans, cis conjugated dienes were the Δ9, 11, Δ10, 12, Δ11, 13 and Δ12, 14 while thetrans, trans isomers were the Δ9, 11, Δ10, 12 and Δ11, 13. These C18∶2 isomers also were detected in oils collected from restaurants and market vendors. Presented in part at the AOCS/JOCS annual meeting in Honolulu, Hawaii, in May 1986.  相似文献   

17.
Directed isomerisation of safflower oil under very low hydrogen partial pressure of 7 psi over a novel bifunctional highly structured rhodium‐based catalyst (Rh/SBA‐15), having narrow pore size distribution ranging from 4 to 8 nm, and BET‐specific surface of ≈1,000 m2 g?1, was investigated as a new chemocatalytic approach for vegetable oil hardening and simultaneously producing health‐beneficial conjugated linoleic acids (CLA). Time course profiles of (cis‐9, trans‐11)‐; (cis‐10, trans‐12)‐; (trans‐10, cis‐12)‐; (cis,cis)‐ and (trans, trans)‐octadecadienoic isomers (CLAs) as well as the other fatty acids traditionally encountered during the hydrogenation of vegetable oils are presented and discussed under selected process conditions. Preliminary results show that it is possible to tailor characteristics of the hydrogenation catalyst in such way to confer its bi‐functional activity: hydrogenation and conjugation isomerisation. © 2011 Canadian Society for Chemical Engineering  相似文献   

18.
An isomeric mixture of linoleic acid hydroperoxides, 13-hydroperoxy-cis-9,trans-11-octadecadienoic acid (79%) and 9-hydroperoxy-cis-12,trans-10-octadecadienoic acid (21%), was decomposed homolytically by Fe(II) in an ethanol-water solution. In one series of experiments, the hydroperoxides were decomposed by catalytic concentrations of Fe(II). The 10−5 M Fe(III) used to initiate the decomposition was kept reduced as Fe(II) by a high concentration of cysteine added to the reaction in molar excess of the hydroperoxides. Nine different monomeric (no detectable dimeric) fatty acids were identified from the reaction. Analyses of these fatty acids revealed that they were mixtures of positional isomers identified as follows: (I) 13-oxo-trans,trans-(andcis,trans-) 9,11-octadecadienoic and 9-oxo-trans,trans- (andcis,trans-) 10,12-octadecadienoic acids; (II) 13-oxo-trans-9,10-epoxy-trans-11-octadecenoic and 9-oxo-trans-12, 13-epoxy-trans-10-octadecenoic acids; (III) 13-oxo-cis-9,10-epoxy-trans-11-octadecenoic and 9-oxo-cis-12, 13-epoxy-trans-10-octadecenoic acids; (IV) 13-hydroxy-9,11-octadecadienoic and 9-hydroxy-10,12-octadecadienoic acids; (V) 11-hydroxy-trans-12, 13-epoxy-cis-9-octadecenoic and 11-hydroxy-trans-9, 10-epoxy-cis-12-octadecenoic acids; (VI) 11-hydroxy-trans-12, 13-epoxy-trans-9-octadecenoic and 11-hydroxy-trans-9,10-epoxy-trans-12-octadecenoic acids; (VII) 13-oxo-9-hydroxy-trans-10-octadecenoic acids; (VIII) isomeric mixtures of 9, 12, 13-dihydroxyethoxy-trans-10-octadecenoic and 9, 10, 13-dihydroxyethoxy-trans-11-octadecenoic acids; and (IX) 9, 12, 13-trihydroxy-trans-10-octadecenoic and 9, 10, 13-trihydroxy-trans-11-octadecenoic acids. In another experiment, equimolar amounts of Fe(II) and hydroperoxide were reacted in the absence of cysteine. A large proportion of dimeric fatty acids and a smaller amount of monomeric fatty acids resulted. The monomeric fatty acids were examined by gas liquid chromatography-mass spectroscopy. Spectra indicated that the monomers were largely similar to those produced by the Fe(III)-cysteine reaction. Presented in part at the American Chemical Society Meeting, Los Angeles, March 1974. ARS, USDA.  相似文献   

19.
A representative number of different milk fats based on a wide range of feeding and lactation conditions as well as 123 German margarines, shortenings, cooking and dietetic fats were analyzed for a variety of trans-C18:2 isomers (exhibiting at least one trans double bond) by means of gas chromatography on a 100m Sil 88 capillary column. In milk fats contents of trans Δ9,trans Δ12,cis Δ9,trans Δ13 (+ trans Δ8,cis Δ12),trans Δ8,cis Δ13,cis Δ9,trans Δ12,trans Δ9,cis Δ12 and trans Δ11,cis Δ15 amounted to 0.09%, 0.11%, 0.11%, 0.10%, 0.07% and 0.33% on average and the content of total trans-C18:2 isomers (without cis Δ9, trans Δ11) was 0.99% in the mean. The content of conjugated linoleic acid cis Δ9,trans Δ11 amounted to 0.81% on average in 238 milk fats. In margarine among others the isomers trans Δ9,trans Δ12,cis Δ9,trans Δ13 (+ trans Δ8,cis Δ12), cis Δ9,trans Δ12 and trans Δ9,cis Δ12 were determined and quantified to 0.03%, 0.04%, 0.29% and 0.23% on average. The mean total content of trans-C18:2 isomers in margarines was 0.61%. Moreover, for all trans-C18:2 isomers the frequency distributions as well as the correlation coefficients towards the trans-C18:1 isomers trans Δ6 to trans Δ16 were derived.  相似文献   

20.
A ~20% CLA-rich soy oil with low saturated fat and no cholesterol was produced by photoisomerizing soy oil linoleic acid. The oil is predominately trans,trans CLA, with the oil containing 17% trans,trans CLA. Recent studies have shown that trans,trans CLA-rich soy oil significantly reduces heart disease and diabetes risk factors in obese rats. However, the positional isomerism of these geometrical isomers has not been identified. The objectives of the study were to determine trans,trans CLA positional isomerism of CLA fatty acids in CLA-rich soy oil and determine the resolution of trans,trans CLA positional isomers by silver ion chromatography. GC–MS studies of 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) derivatives of CLA-rich oil showed that 9,11 CLA and 10,12 CLA were the major positional isomers. These were hypothesized to be the trans,trans CLA isomers, which was confirmed by silver ion chromatography and subsequent GC–FID fatty acid and ATR-FTIR geometrical isomer analysis of the collected fractions. The identification of 9,11 trans,trans CLA and 10,12 trans,trans CLA as the major CLA isomers in CLA-rich oil then allowed the deduction of the synthetic mechanism of the photoisomerism of soy oil linoleic acid to trans,trans CLA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号