共查询到19条相似文献,搜索用时 94 毫秒
1.
分布估计算法研究进展 总被引:2,自引:0,他引:2
作为一种新颖的基于概率模型的进化算法,近年来分布估计算法(EDA)得到了广泛的研究和发展.在介绍分布估计算法原理和特点的基础上,重点综述了近些年分布估计算法的研究进展,包括改进概率模型、保持种群多样性以及设计混合算法,进而总结了分布估计算法在理论及应用方面的研究现状,最后提出了有待进一步研究的若干方向和内容. 相似文献
2.
3.
4.
二阶卡尔曼滤波分布估计算法 总被引:4,自引:0,他引:4
分布估计算法由于其较强的理论基础已成为进化计算研究的新热点.从卡尔曼滤波的角度来看,它的作甩实际上是一个递归滤波器,但作用在一个种群上的分布估计算法相当于只有一个信息源.因此,该文利用信息融合的思想,将种群分成若干子种群,各子种群独立地使用二阶分布估计算法来估计其状态,这样就可从多个信息源获得信息.然后用卡尔曼滤波器将这多个信息源的信息相融合,以产生更准确的估计,并将估计信息反馈到各子种群中.实验结果表明,相对于已有的二阶分布估计算法,该文算法的稳定性和全局搜索能力都得到了很大提高,从而说明了该文算法的有效性. 相似文献
5.
6.
论文重点讨论了分布估计算法的理论研究。首先,抽取出分布估计算法的核心思想,然后旨在使用EDA算法解决复杂优化问题,提出基于近似动态规划的分布估计算法。通过Agent与环境的交互,将近似动态规划引入到进化计算中,获得概率模型并进行适应性的更新。测试函数使用六个经典的对比实验,结果表明本算法的鲁棒性,运行时间短并具有较强的全局搜索能力,可以作为解决函数优化问题的有效解决算法。 相似文献
7.
针对多目标分布估计算法全局收敛性较弱的缺陷,提出了一种自适应混合多目标分布估计进化算法。其基本思想是:在多目标分布估计算法中引入全局收敛性较强的差分进化算法,当函数变化率较大时,用分布估计算法产生新种群;当函数变化率较小即算法可能陷入局部收敛时,用差分进化算法产生新种群。理论分析和数值实验结果表明,这种混合算法不仅具有良好的全局收敛性,而且解的分布性和均匀性较没有考虑目标函数变化率的混合多目标分布估计算法也有了一定程度的提高。 相似文献
8.
9.
10.
11.
12.
演化算法通过模拟自然界生物迭代演化的智能现象来求解优化问题,因其不依赖于待解问题具体数学模型特性的优势,已成为求解复杂优化问题的重要方法.分布估计算法是一类新兴的演化算法,它通过估计种群中优势个体的分布状况建立概率模型并采样得到子代,具有良好的搜索多样性,且能通用于连续和离散空间的优化问题.为进一步推动基于概率分布思想的演化算法发展,概述了多峰优化演化算法的研究现状,并总结出2个基于概率分布的演化算法框架:面向多解优化的概率分布演化算法框架和基于概率分布的集合型离散演化算法框架.前者针对现有的演化算法在求解多峰多解的优化难题时缺乏足够的搜索多样性的缺点,将广义上基于概率分布的演化策略与小生境技术相结合,突破多解优化的搜索多样性瓶颈;后者围绕粒子群优化等部分演化算法在传统上局限于连续实数向量空间的不足,引入概率分布估计的思想,在离散的集合空间重定义了算法的演化操作,从而提高了算法的可用性. 相似文献
13.
在最大熵分布估计算法中,根据Jaynes原理来建立分布估计算法中的概率密度。基于SVM的概率密度估计则是根据概率密度的定义,由核函数构造一个包含未知参数的概率密度函数。它根据样本点建立这个概率密度的数学规划模型,并用不敏感损失函数的支持向量机方法来求解这个模型。对得到的概率密度进行仿真测试,最后将得到的密度应用到分布估计算法中。 相似文献
14.
面向用户生成内容(User generated content, UGC)的进化搜索在大数据及个性化服务领域已引起广泛关注, 其关键在于基于多源异构用户生成内容构建用户认知偏好模型, 进而设计高效的进化搜索机制. 针对此, 提出融合注意力机制(Attention mechanism, AM)的受限玻尔兹曼机(Restricted Boltzmann machine, RBM)偏好认知代理模型构建机制, 并应用于交互式分布估计算法(Interactive estimation of distribution algorithm, IEDA), 设计含用户生成内容的个性化进化搜索策略. 基于用户群体提供的文本评论, 以及搜索物品的类别文本, 构建无监督受限玻尔兹曼机模型提取广义特征; 设计注意力机制, 融合广义特征, 获取对用户认知偏好高度相关特征的集成; 利用该特征再次训练受限玻尔兹曼机, 实现对用户偏好认知代理模型的构建; 根据用户偏好认知代理模型, 给出交互式分布估计算法概率更新模型以及物品适应度评价函数, 实现物品个性化进化搜索. 算法在亚马逊个性化搜索实例的应用验证了用户认知偏好模型的可靠性, 以及个性化进化搜索的有效性. 相似文献
15.
分布估计算法从宏观的角度建立一个概率模型,用来描述解空间的分布,从而通过进化计算获得优势个体。目前,离散型分布估计算法研究已经比较成熟,而连续型分布估计算法研究进展缓慢。采用均匀分布缩小采样领域的思想,设计新的分布估计算法求解连续型优化问题。实验数据表明,该分布估计算法对于求解连续型问题是有效的。 相似文献
16.
17.
分布估计算法综述 总被引:76,自引:1,他引:76
分布估计算法是进化计算领域新兴起的一类随机优化算法,是当前国际进化计算领域的研究热点. 分布估计算法是遗传算法和统计学习的结合,通过统计学习的手段建立解空间内个体分布的概率模型,然后对概率模型随机采样产生新的群体,如此反复进行,实现群体的进化. 分布估计算法中没有传统的交叉、变异等遗传操作,是一种全新的进化模式;这种优化技术能够通过概率图模型对变量之间的关系进行建模,从而能有效的解决多变量相关的优化问题. 根据概率模型的复杂性,本文按照变量无关、双变量相关、多变量相关等三类分别介绍相应的分布估计算法. 作为一篇综述性文章,本文旨在全面系统的向国内读者介绍这一新技术,并总结分布估计算法的研究现状和未来的研究方向. 相似文献
18.
Large-Scale Estimation of Distribution Algorithms with Adaptive Heavy Tailed Random Projection Ensembles 下载免费PDF全文
Journal of Computer Science and Technology - We present new variants of Estimation of Distribution Algorithms (EDA) for large-scale continuous optimisation that extend and enhance a recently... 相似文献
19.
随着基础理论研究所取得的一系列进展,分布估计算法逐渐成为进化计算研究领域的一个新的研究方向,并成为当今国际进化算法研究的新热点。采用机器学习的方法分析数据、指导搜索已经成为设计新算法的趋势。将分布估计算法引入到朴素贝叶斯分类器系统中,设计基于基尼指数的适应度函数,从而进一步提高朴素贝叶斯分类器的性能。 相似文献