首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用正交试验研究了液态挤压工艺参数对ZA43合金力学性能的影响,并显示了液态挤压ZA43合金的组织特征。结果表明:液态挤压工艺参数对ZA43合金力学性能影响的主次顺序为:加压前停留时间、浇注温度、模具温度,其中加压前停留时间的影响最显著。在适宜的工艺参数下,液态挤压ZA43合金力学性能可达到σb=420MPa,δ5=13%和硬度131HBS。  相似文献   

2.
高温合金GH4169管材挤压工艺及组织分析   总被引:1,自引:0,他引:1  
对高温合金GH4169管材挤压成形进行了工艺研究,确定了GHll40管材挤压成形工艺参数,分析了GH4169管材挤压力能参数变化规律,分析了管材挤压对组织性能的影响。研究结果发现,GH4169管材挤压成形时必须严格控制坯料温度、模具预热温度、润滑方式、挤压速度、挤压比等工艺参数。  相似文献   

3.
轴承保持架筒形坯件挤压铸造成形工艺及组织性能研究   总被引:3,自引:1,他引:3  
采用直接挤压铸造成形工艺来生产Al-Cu系合金高速机床主轴轴承保持架筒形坯件,试验研究了其工艺参数对该铸件组织及力学性能的影响,从而确定出挤压铸造简形件合适的工艺参数。  相似文献   

4.
对AZ31合金热挤压过程中的工艺参数对温度场变化的影响进行了数值模拟与参数优化,并在优化工艺下得到了与腔体连接部分挤压型材的组织特征。结果表明,对挤压过程进行分段模拟的过程中,热挤压工艺参数和腔体温度都会对AZ31合金型材的温度场和显微组织产生重要的影响。其中,挤压速度、模具预热温度一致的条件下,AZ31合金挤压件的温度降主要与腔体温度有关;在优化参数工艺下得到的腔体区域和挤出区域的AZ31合金的组织都较为致密,没有出现气孔、夹杂等缺陷。  相似文献   

5.
对合金进行不同挤压参数的挤压试验,通过对实验结果的分析,来探究挤压工艺参数对镁合金的组织性能的影响规律。研究表明合金在热挤压过程发生了明显的动态再结晶,与铸态组织相比晶粒得到了细化,力学性能也有了明显提升。合金中的第二相是W相,第二相在不同热挤压条件下,形态和分布差别较大。合金的组织和力学性能在挤压过程中受挤压温度和挤压比影响,随着挤压温度提高,合金的再结晶晶粒数量增加,但有长大的趋势,挤压温度为300℃时,合金强度最高;挤压比对合金塑性影响较大,挤压比为25时,合金的塑性显著提升。  相似文献   

6.
对合金进行不同挤压参数的挤压试验,通过对实验结果的分析,来探究挤压工艺参数对镁合金的组织性能的影响规律。研究表明,合金在热挤压过程发生了明显的动态再结晶,与铸态组织相比晶粒得到了细化,力学性能也有了明显提升。合金中的第二相是W相,第二相在不同热挤压条件下,形态和分布差别较大。合金的组织和力学性能在挤压过程中受挤压温度和挤压比影响,随着挤压温度提高,合金的再结晶晶粒数量增加,但有长大的趋势,挤压温度为300℃时,合金强度最高;挤压比对合金塑性影响较大,挤压比为25时,合金的塑性显著提升。  相似文献   

7.
序 l 2论文名称加磷处理过共晶铝硅合金的挤压铸造挤压铸造工艺参数对LF 5合金机械性能影响挤压铸造摩托车上联板有色金属液态模锻的生产实践295·0合金的液态模锻累乙烯胶状涂料在液态模锻中的应用黄嗣挤压铸造发展概况对压力下结晶形核率的理论计算工艺参数对铝一铁双金属结合的影刚曲址发AI—Zn—Mg—Cu系挤压铸作者单位浙江大学上海市机制工艺研究所航空部南方动力机械公司贵州省机械研究所新征机械厂技术开发中心般墅堰机车车辆厂兵器部挤铸造工艺与设备考察团兵器部五二研究所兵器部五二研究所兵器部五二研究所挤压铸造铝合金机壳 …  相似文献   

8.
研究了化学成分、挤压温度、挤压比、退火温度对TC2钛合金管材挤压成形、组织性能的影响。掌握了该合金热加工变形的特点,确定了合理的工艺路线及参数,研制的产品组织性能、表面质量及尺寸精度优良,满足相关技术标准的要求。  相似文献   

9.
李荣德  于茜  侯君  白彦华  李晨曦  于宝义 《铸造》2005,54(3):222-225
研究了大高径比(M=H/D=7)ZA27合金铸件的柱塞式挤压铸造.主要分析了挤压铸造工艺参数对大高径比ZA27合金的通体力学性能和显微组织影响规律,初步确定了适合大高径比ZA27合金铸件柱塞式挤压铸造的工艺参数.试验结果表明,挤压铸造能够改善大高径比ZA27合金铸件的通体力学性能,为扩大锌铝合金的应用范围提供了有力的技术保证.  相似文献   

10.
《铸造技术》2016,(6):1245-1248
对Mg-3Sn合金棒材的挤压工艺进行了数值模拟,通过改变挤压比、挤压温度和挤压速度的方法优化了挤压工艺,并在优化工艺参数下进行了Mg-3Sn合金棒材的挤压加工。结果表明,Mg-3Sn合金棒材的最佳挤压比为21,挤压温度为380℃,挤压速度为3 mm/s。优化工艺下的挤压棒材晶粒组织已经得到细化,且有变形挛晶和等轴晶产生,组织较为致密,未见孔洞、挤压变形层等缺陷,棒材的抗拉强度和屈服强度都有较大幅度的提高,而断后伸长率略有降低或者基本不变。Mg-3Sn合金棒材的挤压工艺数值模拟结果与试验结果较为一致。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

17.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

18.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

19.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

20.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号