首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Aerobic granular sludge in a sequencing batch reactor   总被引:88,自引:0,他引:88  
In a laboratory scale sequencing batch reactor (SBR) granules were cultured under aerobic conditions. To enhance the growth of granular sludge the SBR was operated with very short sedimentation and draw phases resulting in the washout of slow settling biomass. Fast settling granules were retained in the reactor and thus had an advantage over flocs with a slower settling velocity. After 40 days of operation granules were the dominant form of microbial aggregates in the reactor, even though some pin-point flocs remained in the system. Granules taken from the reactor were stored for weeks without disintegrating. After about 130 days of operation the granule quality and COD-removal worsened. The reasons for that are yet to be investigated.  相似文献   

2.
Aerobic granular sludge is extremely promising for the treatment of effluents containing toxic compounds, and it can economically compete with conventional activated sludge systems. A laboratory scale granular sequencing batch reactor (SBR) was established and operated during 444 days for the treatment of an aqueous stream containing a toxic compound, 2-fluorophenol (2-FP), in successive phases. Initially during ca. 3 months, the SBR was intermittently fed with 0.22 mM of 2-FP added to an acetate containing medium. No biodegradation of the target compound was observed. Bioaugmentation with a specialized bacterial strain able to degrade 2-FP was subsequently performed. The reactor was thereafter continuously fed with 0.22 and 0.44 mM of 2-FP and with 5.9 mM of acetate (used as co-substrate), for 15 months. Full degradation of the compound was reached with a stoichiometric fluoride release. The 2-FP degrading strain was successfully retained by aerobic granules, as shown through the recovering of the strain from the granular sludge at the end of the experiment. Overall, the granular SBR has shown to be robust, exhibiting a high performance after bioaugmentation with the 2-FP degrading strain. This study corroborates the fact that bioaugmentation is often needed in cases where biodegradation of highly recalcitrant compounds is targeted.  相似文献   

3.
An aerobic granular sludge (AGS) reactor was run for 280 days to study the competition between Phosphate and Glycogen Accumulating Organisms (PAOs and GAOs) at high temperatures. Numerous researches have proven that in suspended sludge systems PAOs are outcompeted by GAOs at higher temperatures. In the following study a reactor was operated at 30 °C in which the P-removal efficiency declined from 79% to 32% after 69 days of operation when biomass removal for sludge retention time (SRT) control was established by effluent withdrawal. In a second attempt at 24 °C, efficiency of P-removal remained on average at 71 ± 5% for 76 days. Samples taken from different depths of the sludge bed analysed using Fluorescent in situ hybridization (FISH) microscopy techniques revealed a distinctive microbial community structure: bottom granules contained considerably more Accumulibacter (PAOs) compared to top granules that were dominated by Competibacter (GAOs). In a third phase the SRT was controlled by discharging biomass exclusively from the top of the sludge bed. The application of this method increased the P-removal efficiency up to 100% for 88 days at 30 °C. Granules selected near the bottom of the sludge bed increased in volume, density and overall ash content; resulting in significantly higher settling velocities. With the removal of exclusively bottom biomass in phase four, P-removal efficiency decreased to 36% within 3 weeks. This study shows that biomass segregation in aerobic granular sludge systems offers an extra possibility to influence microbial competition in order to obtain a desired population.  相似文献   

4.
Development of granular sludge for textile wastewater treatment   总被引:2,自引:0,他引:2  
Microbial granular sludge that is capable to treat textile wastewater in a single reactor under intermittent anaerobic and aerobic conditions was developed in this study. The granules were cultivated using mixed sewage and textile mill sludge in combination with anaerobic granules collected from an anaerobic sludge blanket reactor as seed. The granules were developed in a single sequential batch reactor (SBR) system under alternating anaerobic and aerobic condition fed with synthetic textile wastewater. The characteristics of the microbial granular sludge were monitored throughout the study period. During this period, the average size of the granules increased from 0.02 ± 0.01 mm to 2.3 ± 1.0 mm and the average settling velocity increased from 9.9 ± 0.7 m h−1 to 80 ± 8 m h−1. This resulted in an increased biomass concentration (from 2.9 ± 0.8 g L−1 to 7.3 ± 0.9 g L−1) and mean cell residence time (from 1.4 days to 8.3 days). The strength of the granules, expressed as the integrity coefficient also improved. The sequential batch reactor system demonstrated good removal of COD and ammonia of 94% and 95%, respectively, at the end of the study. However, only 62% of color removal was observed. The findings of this study show that granular sludge could be developed in a single reactor with an intermittent anaerobic-aerobic reaction phase and is capable in treating the textile wastewater.  相似文献   

5.
Variation of bulk properties of anaerobic granules with wastewater type   总被引:11,自引:0,他引:11  
Batstone DJ  Keller J 《Water research》2001,35(7):1723-1729
Development of a granular sludge with high strength, high biological activity and a narrow settling distribution is necessary for optimal operation of high-rate upflow anaerobic treatment systems. Several studies have compared granules produced from different wastewaters but these have largely been from laboratory-fed reactors or compared granules from full-scale reactors fed similar wastewater types. Though two authors have commented on the inferiority of granules produced by a protein-based feed, the properties of these granules have not been characterised. In this paper, granules from full-scale reactors treating fruit and vegetable cannery effluent, two brewery effluents and a pig abattoir (slaughterhouse) were compared in terms of basic composition, size distribution, density, settling velocity, shear strength, and EPS content. The results supported previous qualitative observations by other researchers that indicate granule properties depend more on wastewater type rather than reactor design or operating conditions such as pre-acidification level. The cannery-fed granules had excellent shear strength, settling distribution and density. Granules from the two brewery-fed reactors had statistically the same bulk properties, which were still acceptable for upflow applications. The protein-grown granule had poor strength and settling velocity.  相似文献   

6.
Franco A  Roca E  Lema JM 《Water research》2006,40(5):871-880
In this work, the effect of the application of a pulse system to anoxic upflow sludge bed (USB) denitrifying reactors for enhancing sludge granulation was studied. In all, three 0.8 L reactors (two operated with flow pulsation, P1 with effluent recycling and P2 without recycling, and one without pulsation and effluent recycling, no pulsation (NP)) were fed with a mixture of NaNO3 and glucose and inoculated with methanogenic granular sludge. The organic loading rate (OLR) and the nitrogen loading rate (NLR) were progressively increased and, at the end of the experiment, extremely high values were obtained (67.5 kgCOD/m3d and 11.25 kgN-NO3-/m3 d). Ammonia and nitrite accumulation in reactor NP were important in the maturation stage, decreasing the denitrification efficiency to 90%, while in reactor P1 only low nitrite values were obtained in the last few days of the experiment. In reactor P2, nitrogen removal was 100% most of the time. Several operational problems (flotation and the subsequent wash out of biomass) appeared in the NP reactor when working at high denitrifying loading rates, while in reactors P1 and P2 there were no notable problems, mainly due to the good characteristics of the sludge developed and the efficient degasification produced by the pulsing flow. The sludge formed in the NP reactor presented a flocculent structure and a total disintegration of the initial methanogenic granules occurred, while a small-sized granular biomass with a high specific density was developed in the pulsed reactors due to the shear stress produced.  相似文献   

7.
SBR中好氧颗粒污泥的培养与除污效能   总被引:8,自引:1,他引:8  
以普通絮状活性污泥为种泥,采用人工配水,通过控制运行条件在SBR中成功地培养出了好氧颗粒污泥。研究表明,该好氧颗粒污泥具有良好的同步硝化反硝化和去除COD的性能。好氧颗粒污泥成熟后平均直径为4~5mm,沉速为72~90m/h,反应器中MLSS为7.8g/L,使反应器对COD和NH3-N的去除率分别达到了95%~98%和75%~90%。  相似文献   

8.
序批式反应器的好氧颗粒污泥特性研究   总被引:2,自引:0,他引:2  
对序批式反应器中好氧颗粒活性污泥的形成过程、处理性能和颗粒分布特性进行了研究。结果表明,不同操作条件下产生了结构形态不同的颗粒污泥,沉降时间是颗粒污泥形成的主要因素,有机负荷对颗粒污泥的结构有一定影响。颗粒污泥反应器对溶解性COD的去除率可达90%,对氨氮的去除率为24%。颗粒污泥在反应器中分布不均匀,反应器底部MLSS高达8g/L,SVI为34mL/g,随着反应器高度的增加则MLSS值降低、SVI值提高;此外较大的颗粒污泥聚集在反应器的底部,较小的颗粒污泥和絮体分布在反应器的中上部。  相似文献   

9.
《Water research》1996,30(6):1451-1458
Denitrification and methanogenesis of a synthetic wastewater containing volatile fatty acids and nitrate were obtained in a single-stage process using an upflow anaerobic sludge blanket (UASB) reactor. The reactor was initially inoculated with methanogenic granular sludge and was gradually adapted to nitrate by increasing the nitrate concentration in the influent. Excess carbon not utilized for denitrification was converted to methane. During steady-state at a loading of 336 mg NO3-N/l/d (24 mmol NO3/l/d) and 6600 mg COD/l/d more than 99% removal of both nitrate and carbon was achieved. Batch experiments with biomass from the reactor showed that approximately 90% of the added nitrate was recovered as nitrogen gas indicating that true dentrification occurred. This was further verified from mass balances over the reactor. The granules changed appearance during the first 5 months of operation being fluffy and buoyant, probably reflecting changes in the microbial composition induced by the presence of nitrate. However, during the next two months more dense granules with good settling abilities gradually established in the system making this kind of combined process feasible in a UASB reactor. Characterization of the produced granules showed that while the mean diameter and density was comparable to granules from purely methanogenic systems, although the strength was lower.  相似文献   

10.
Due to unspecified operational problems, the specific acetoclastic activity (SAA) of the anaerobic granular sludge present in an industrial UASB reactor was considerably damaged (from 250 to less than 10mL CH(4)@STP/gVSS.d), significantly reducing the biogas production of that industrial unit. The hydrogenotrophic methanogenic activity exhibited a value of 600mL CH4@STP/gVSS.d, the settling velocity was 31.4+/-9.8m/h, the average equivalent diameter was 0.92+/-0.43mm, and about 70% of the VSS were structured in aggregates larger than 1mm. In order to study the recovery of the SAA, this sludge was collected and inoculated in a lab-scale expanded granular sludge blanket (EGSB) reactor. Ethanol was fed as the sole carbon source during a trial period of 106 days. Process monitoring included COD removal efficiency, methane production, and periodic determination of the specific methanogenic activity in the presence of acetate, propionate, butyrate, ethanol and H(2)/CO(2). Quantitative image analysis allowed for information to be obtained on granular fragmentation/erosion and filaments release. During the first operational period, biogas production was mainly due to the hydrogenotrophic activity. However, after 40 days, the SAA steadily increased achieving a maximum value of 183+/-13mL CH4@STP/gVSS.d. The onset of SAA recovery, granules breakdown and filaments release to the bulk occurred simultaneously. Further increase in SAA was accompanied by granular growth. In the last 25 days of operation, the size distribution was stable with more than 80% of projected area of aggregates corresponding to granules larger than 1mm (equivalent diameter). Confocal images from FISH hybridized sections of the granules showed that after SAA recovery, the granules developed an organized structure where an acidogenic/acetogenic external layer was apparent. Granular fragmentation and increase of filaments in the bulk, simultaneously with the increase in the acetoclastic activity are described for the first time and might represent a structural response of granular sludge to promote the optimal substrate uptake at minimal diffusion limitations.  相似文献   

11.
To better understand granule growth and breakage processes in aerobic granular sludge systems, the particle size of aerobic granules was tracked over 50 days of wastewater treatment within four sequencing batch reactors fed with abattoir wastewater. These experiments tested a novel hypothesis stating that granules equilibrate to a certain stable granule size (the critical size) which is determined by the influence of process conditions on the relative rates of granule growth and granule breakage or attrition. For granules that are larger than the critical size, granule breakage and attrition outweighs granule growth, and causes an overall reduction in granule size. For granules at the critical size, the overall growth and size reduction processes are balanced, and granule size is stable. For granules that are smaller than the critical size, granule growth outweighs granule breakage and attrition, and causes an overall increase in granule size. The experimental reactors were seeded with mature granules that were either small, medium, or large sized, these having respective median granule sizes of 425 μm, 900 μm and 1125 μm. An additional reactor was seeded with a mixture of the sized granules to represent the original source of the granular sludge. The experimental results were analysed together with results of a previous granule formation study that used mixed seeding of granules and floccular sludge. The analysis supported the critical size hypothesis and showed that granules in the reactors did equilibrate towards a common critical size of around 600–800 μm. Accordingly, it is expected that aerobic granular reactors at steady-state operation are likely to have granule size distributions around a characteristic critical size. Additionally, the results support that maintaining a quantity of granules above a particular size is important for granule formation during start-up and for process stability of aerobic granule systems. Hence, biomass washout needs to be carefully managed to optimize granule formation during the reactor start-up.  相似文献   

12.
Zhou Y  Pijuan M  Yuan Z 《Water research》2008,42(12):3207-3217
A novel 2-sludge 3-stage process using a combination of granular sludge and biofilm was developed to achieve biological removal of nitrogen and phosphorus from nutrient-rich wastewater. The system consists of a granular sequencing batch reactor (SBR) working under alternating anaerobic/anoxic conditions supplemented with a short aerobic phase and an aerobic biofilm SBR. The wastewater is first fed to the granular SBR reactor, where easily biodegradable carbon sources are taken up primarily by polyphosphate accumulating organisms (PAOs). The supernatant resulting from quick settling of the granular sludge is then fed to the biofilm SBR for nitrification, which produces oxidized nitrogen that is returned to the granular reactor for simultaneous denitrification and phosphorus removal. While maximizing the utilization of organic substrates and reducing operational costs, as do other 2-sludge processes previously reported in literature, the proposed system solves the bottleneck problem of traditional 2-sludge systems, namely high effluent ammonia concentration, due to its high-volume exchange ratios. An ammonia oxidation rate of 32 mg N/Lh was achieved in the biofilm SBR, which produced nitrite as the final product. This nitrite stream was found to cause major inhibition on the anoxic P uptake and also to result in the accumulation of N(2)O. These problems were solved by feeding the nitrite-containing stream continuously to the granular reactor in the anoxic phase. With a nitrogen and phosphorus removal efficiency of 81% and 94%, respectively, the system produces an effluent that is suitable for land irrigation from a wastewater stream containing 270 mg N/L of total nitrogen and 40 mg P/L of total phosphorus.  相似文献   

13.
The aim of this investigation was to evaluate the effect of continuous and intermittent feeding strategies on contaminant removal efficiency of shallow horizontal subsurface-flow constructed wetlands (SSF CWs). Also it was tested the effect of the presence of plant aboveground biomass on removal efficiency. Two experimental wetlands planted with common reed were subjected to a three-phase, 10-month experiment involving a common source of settled urban wastewater with a hydraulic loading rate of 26 mm/d during the first and second phases and 39 mm/d during the third. In the first and second phases one of the wetlands was fed continuously while the other was fed intermittently. In the third phase both systems were operated intermittently, but in one the macrophyte aboveground biomass was cut in order to study the effect of plant aboveground biomass on the removal efficiency. The intermittently fed system presented systematically more oxidised environmental conditions and higher ammonium removal efficiencies (on average 80 and 99% for the first and the second phases respectively) compared with the continuously fed system (71 and 85%). The mass amount of ammonium removed ranged from 0.58 to 0.67 g N/m2 d for the intermittently fed system and from 0.52 to 0.58 g N/m2 d for the continuously fed system. Sulphate removal was higher in the continuously fed system (on average 76 and 79% for the first and second phases respectively) compared with the intermittently fed system (51 and 58%). In the third phase the wetland that operated with aboveground biomass exhibited more oxidised environmental conditions and better removal efficiencies (on average 81% for COD and 98% for ammonium) than the wetland operated without aboveground biomass (73% for COD and 72% for ammonium). The results of this study indicate that the intermittent feeding strategy improved the removal of ammonium and the presence of aboveground biomass enhanced the removal of COD and ammonium.  相似文献   

14.
The ammonium adsorption properties of aerobic granular sludge, activated sludge and anammox granules have been investigated. During operation of a pilot-scale aerobic granular sludge reactor, a positive relation between the influent ammonium concentration and the ammonium adsorbed was observed. Aerobic granular sludge exhibited much higher adsorption capacity compared to activated sludge and anammox granules. At an equilibrium ammonium concentration of 30 mg N/L, adsorption obtained with activated sludge and anammox granules was around 0.2 mg NH4-N/g VSS, while aerobic granular sludge from lab- and pilot-scale exhibited an adsorption of 1.7 and 0.9 mg NH4-N/g VSS, respectively. No difference in the ammonium adsorption was observed in lab-scale reactors operated at different temperatures (20 and 30 °C). In a lab-scale reactor fed with saline wastewater, we observed that the amount of ammonium adsorbed considerably decreased when the salt concentration increased. The results indicate that adsorption or better ion exchange of ammonium should be incorporated into models for nitrification/denitrification, certainly when aerobic granular sludge is used.  相似文献   

15.
Aerobic granulation is a novel and promising technology for wastewater treatment. However, long start-up periods required for the development of granules from floccular sludge, and the loss of biomass in this period leading to poor nutrient removal performance are key challenges. In a recent study the addition of crushed granules to a floccular sludge significantly reduced the start-up period, and also maintained the nutrient removal performance during granulation. In this study, we examined the mechanisms responsible for the fast granulation from a mixture of floccular and granular sludges. Fluorescent microbead particles (4 μm diameter) were successfully applied to differentially label the surfaces of floccular and crushed granular aggregates. Labelled flocs and crushed granules were added to a laboratory scale wastewater treatment reactor, and the granule formation process was monitored using confocal laser scanning microscopy over an 80 day period. Flocs were observed to attach to the surface of the seeding granules, resulting in reduced biomass washout during granulation. This mechanism not only reduces the granulation period, but also maintains the nutrient removal performance of the reactor. The results indicate that the granules acted as nuclei for floccular particle attachment, which accelerated granule formation.  相似文献   

16.
A nitrifying activated sludge reactor fed with a high salinity medium was operated efficiently at ammonia loading rates between 1 and 4 g NH4+ -N l(-1) d(-1). The system became completely inefficient at inlet salt concentrations higher than 525 mM due to the mixed inhibition effect of salts and ammonia. The final product was mainly nitrate although dissolved oxygen limitations caused sporadic ammonia and nitrite accumulations. Specific nitrifying activity decreased due to the saline effect. A set of activity tests showed that in the continuous reactor non-adapted biomass is rather more sensitive than biomass to the saline effect. Physical properties of biomass in the reactor (sludge volumetric index and zone settling velocity) were not affected by the saline concentration, a biomass concentration of 20 gVSS l(-1) was achieved.  相似文献   

17.
Temperature changes can influence biological processes considerably. To investigate the effect of temperature changes on the conversion processes and the stability of aerobic granular sludge, an aerobic granular sludge sequencing batch reactor (GSBR) was exposed to short-term and long-term temperature changes. Start-up at 8 degrees C resulted in irregular granules that aggregated as soon as aeration was stopped, which caused severe biomass washout and instable operation. The presence of COD during the aerobic phase is considered to be the major reason for this granule instability. Start-up at 20 degrees C and lowering the temperature to 15 degrees C and 8 degrees C did not have any effect on granule stability and biomass could be easily retained in the system. The temperature dependency of nitrification was lower for aerobic granules than usually found for activated sludge. Due to decreased activity in the outer layers of granules at lower temperatures, the oxygen penetration depth could increase, which resulted in a larger aerobic biomass volume, compensating the decreased activity of individual organisms. Consequently the denitrifying capacity of the granules decreased at reduced temperatures, resulting in an overall poorer nitrogen removal capacity. The overall conclusion that can be drawn from the experiments at low temperatures is that start-up in practice should take place preferentially during warm summer periods, while decreased temperatures during winter periods should not be a problem for granule stability and COD and phosphate removal in a granular sludge system. Nitrogen removal efficiencies should be optimized by changes in reactor operation or cycle time during this season.  相似文献   

18.
Quantification of the shear stresses in a microbial granular sludge reactor   总被引:3,自引:0,他引:3  
Since a certain level of hydrodynamic shear force is needed in the formation of microbial granules for wastewater treatment, a method for quantifying the shear stresses in a microbial granular sludge reactor is highly desirable. In this work a novel energy-dissipation-based model was established and validated to quantitatively describe the shear stresses in a granular sludge sequencing batch reactor (SBR). With this model, the shear stress at the solid–liquid interface in an SBR was estimated and the relative magnitudes of shear stresses induced by fluid, gas bubble and collision on granules were evaluated. The results demonstrate that the effect of reactor geometry on the global shear stress was significant. Both the shear stress at the microbial granule surface and the biomass-loss rate increased with an increase in biomass concentration in the SBR. The gas bubble and the collision were found to be the main source for the shear stress at the granule surface.  相似文献   

19.
Pijuan M  Werner U  Yuan Z 《Water research》2011,45(16):5075-5083
One of the main challenging issues for the aerobic granular sludge technology is the long startup time when dealing with real wastewaters. This study presents a novel strategy to reduce the time required for granulation while ensuring a high level of nutrient removal. This new approach consists of seeding the reactor with a mixture of crushed aerobic granules and floccular sludge. The effectiveness of the strategy was demonstrated using abattoir wastewater, containing nitrogen and phosphorus at approximately 250 mgN/L and 30 mgP/L, respectively. Seven different mixtures of crushed granules and floccular sludge at granular sludge fractions (w/w in dry mass) of 0%, 5%, 10%, 15%, 25%, 30% and 50% were used to start eight granulation processes. The granulation time (defined as the time when the 10th percentile bacterial aggregate size is larger than 200 μm) displayed a strong dependency on the fraction of granular sludge. The shortest granulation time of 18 days was obtained with 50% crushed granules, in comparison with 133 days with 5% crushed granules. Full granulation was not achieved in the two trials without seeding with crushed granules. In contrast to the 100% floccular sludge cases, where a substantial loss of biomass occurred during granulation, the biomass concentration in all other trails did not decrease during granulation. This allowed that good nitrogen removal was maintained in all the reactors during the granulation process. However, enhanced biological phosphorus removal was achieved in only one of the eight trials. This was likely due to the temporary accumulation of nitrite, a strong inhibitor of polyphosphate accumulating organisms.  相似文献   

20.
Aerobic granulation of activated sludge was achieved in a pilot-scale sequencing batch reactor (SBR) for the treatment of low-strength municipal wastewater (<200 mg L−1 of COD, chemical oxygen demand). The volume exchange ratio and settling time of an SBR were found to be two key factors in the granulation of activated sludge grown on the low-strength municipal wastewater. After operation of 300 days, the mixed liquor suspended solids (MLSS) concentration in the SBR reached 9.5 g L−1 and consisted of approximate 85% granular sludge. The average total COD removal efficiency kept at 90% and NH4+-N was almost completely depleted (∼95%) after the formation of aerobic granules. The granules (with a diameter over 0.212 mm) had a diameter ranging from 0.2 to 0.8 mm and had good settling ability with a settling velocity of 18-40 m h−1. Three bacterial morphologies of rod, coccus and filament coexisted in the granules. Mathematical modeling was performed to get insight into this pilot-scale granule-based reactor. The modified IWA activated sludge model No 3 (ASM3) was able to adequately describe the pilot-scale SBR dynamics during its cyclic operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号