首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The CO2 reforming of methane (in coke oven gas) on the coal char catalyst was performed in a fixed bed reactor at temperatures between 800 and 1200 °C under normal pressure. The effects of the coal char catalyst pretreatment and the ratio of CO2/CH4 were studied. Experimental results showed that the coal char was an effective catalyst for production of syngas, and addition of CO2 did not enhance the CH4 reforming to H2. It was also found that the product gas ratio of H2/CO is strongly influenced by the feed ratio of CO2/CH4. The modified coal char catalyst was more active during the CO2–CH4 reforming than the coal char catalyst based on the catalyst volume, furthermore the modified catalyst exhibited high activity in CO2–CH4 reforming to syngas. The conversion of methane can be divided into two stages. In the first stage, the conversion of CH4 gradually decreased. In the second stage, the conversion of methane maintained nearly constant. The conversion of CO2 decreased slightly during the overall reactions in CO2–CH4 reforming. The coal char catalyst is a highly promising catalyst for the CO2 reforming of methane to syngas.  相似文献   

2.
The influence of the O2 pretreatment on the CO2 reforming of methane to synthesis gas has been investigated with Ni catalysts supported on β-SiC extrudate. The structure and properties of the catalysts were characterised by SEM, TEM and XRD techniques. The pretreatment of the catalyst by a mixture of CO2 and O2 significantly improves the catalytic activity for the CO2 reforming. On the Ni 5 wt.% supported on β-SiC catalyst, the CH4 conversion has reached 90% with the O2 pretreatment instead of 80% by direct activation under CO2/CH4 mixture. The oxygen pretreatment seems to stabilize the metallic nickel phase instead of NiSi2.  相似文献   

3.
V.R. Choudhary  K.C. Mondal  T.V. Choudhary 《Fuel》2006,85(17-18):2484-2488
The oxy-CO2 methane reforming reaction (OCRM) has been investigated over CoOx supported on a MgO precoated highly macroporous silica–alumina catalyst carrier (SA-5205) at different reaction temperatures (700–900 °C), O2/CH4 ratios (0.3–0.45) and space velocites (20,000–100,000 cc/g/h). The reaction temperature had a profound influence on the OCRM performance over the CoO/MgO/SA-5205 catalyst; the methane conversion, CO2 conversion and H2 selectivity increased while the H2/CO ratio decreased markedly with increasing reaction temperature. While the O2/CH4 ratio did not strongly affect the CH4 and CO2 conversion and H2 selectivity, it had an intense influence on the H2/CO ratio. The CH4 and CO2 conversion and the H2 selectivity decreased while the H2/CO increased with increasing space velocity. The O2/CH4 ratio and the reaction temperature could be used to manipulate the heat of the reaction for the OCRM process. Depending on the O2/CH4 ratio and temperature the OCRM process could be operated in a mildly exothermic, thermal neutral or mildly endothermic mode. The OCRM reaction became almost thermoneutral at an OCRM reaction temperature of 850 °C, O2/CH4 ratio of 0.45 and space velocity of 46,000 cc/g/h. The CH4 conversion and H2 selectivity over the CoO/MgO/SA-5205 catalyst corresponding to thermoneutral conditions were excellent: 95% and 97%, respectively with a H2/CO ratio of 1.8.  相似文献   

4.
A NiO/MgO catalyst prepared by impregnation, which reduced in H2 had very high CO yield and stability in CO2 reforming of methane, was investigated by XPS, XRD, BET and pulse-MS response. This catalyst was compared to that obtained by mechanical mixing of powders of the two oxides. It was found that the entire NiO formed a solid solution with MgO in the former catalyst, while only a fraction of NiO formed a solid solution with MgO in the latter one. BET revealed that, in contrast to NiO and MgO, the NiO/MgO catalyst prepared by impregnation had a high stability to sintering, because its surface area hardly changed during calcination from 1.5 to 20 h at 800°C. In the same catalyst, a surface enrichment in MgO, which was greater after than before reduction, was detected. Compared to MgO or NiO, this catalyst had a lower Mg(2p) and a higher Ni(2p3/2) binding energy. This indicates that electron transfer from NiO to MgO took place, which, increasing the binding between the two oxides, might be responsible for the resistance of the solid solution to sintering. Because of the interactions between Ni and Mg, the clustering of Ni, which stimulates carbon deposition is inhibited. This explains the high stability of the CO yield in the CO2 reforming of methane over the NiO/MgO catalyst prepared by impregnation. The pulse-MS response suggested that the decompositions of CO2 to CO and O and of CH4 to C and H are involved in the reaction mechanism of CO2 reforming of methane over the reduced NiO-MgO solid solution catalyst. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The catalytic activity of a wood char towards CH4 decomposition in a pyrolysis gas was investigated in a fixed bed reactor for maximising hydrogen production from biomass gasification. Wood char is suggested to be the cheapest and greenest catalyst for CH4 conversion as it is directly produced in the pyrolysis facility. The conversion of methane reaches 70% for a contact time of 120 ms at 1000 °C. Because steam and CO2 are simultaneously present in the pyrolysis gas, the carbon catalyst is continuously regenerated. Hence the conversion of methane quickly stabilises. Such a phenomenon is shown to be possible through the oxidation of the char by CO2 and H2O at high temperature, which prevents the blocking of the mouth of pores by the concurrent pyrolytic carbon deposition. In the experimental conditions, oxygenated functional surface groups are continuously formed (by steam and CO2 oxidation) and thermally decomposed. The active sites for CH4 chemisorption and decomposition are suggested to be the unsaturated carbon atoms generated by the evolution of the oxygenated functions at high temperature.  相似文献   

6.
A novel plasma-treated Ni/MgO catalyst was prepared by treating coprecipitated NiCO3–MgCO3 with dielectric-barrier discharge plasma. The results by XRD, TEM and N2 adsorption analyses showed that the plasma-prepared Ni/MgO catalyst possessed smaller particle size, enhanced nickel dispersion, and higher specific surface area than a conventionally reduced Ni/MgO catalyst. The plasma-prepared Ni/MgO catalyst also exhibited better catalytic activity for carbon dioxide reforming of methane. More than 20% higher conversions of methane and carbon dioxide were obtained than those over the conventional Ni/MgO catalyst at 700 °C and a space velocity of 96,000 mL/(h?gcat).  相似文献   

7.
Hydrogen production was prepared via catalytic steam reforming of fast pyrolysis bio-oil in a two-stage fixed bed reactor system. Low-cost catalyst dolomite was chosen for the primary steam reforming of bio-oil in consideration of the unavoidable deactivation caused by direct contact of metal catalyst and bio-oil itself. Nickel-based catalyst Ni/MgO was used in the second stage to increase the purity and the yield of desirable gas product further. Influential parameters such as temperature, steam to carbon ratio (S/C, S/CH4), and material space velocity (WBHSV, GHSV) both for the first and the second reaction stages on gas product yield, carbon selectivity of gas product, CH4 conversion as well as purity of desirable gas product were investigated. High temperature (> 850 °C) and high S/C (> 12) are necessary for efficient conversion of bio-oil to desirable gas product in the first steam reforming stage. Low WBHSV favors the increase of any gas product yield at any selected temperature and the overall conversion of bio-oil to gas product increases accordingly. Nickel-based catalyst Ni/MgO is effective in purification stage and 100% conversion of CH4 can be obtained under the conditions of S/CH4 no less than 2 and temperature no less than 800 °C. Low GHSV favors the CH4 conversion and the maximum CH4 conversion 100%, desirable gas product purity 100%, and potential hydrogen yield 81.1% can be obtained at 800 °C provided that GHSV is no more than 3600 h− 1. Carbon deposition behaviors in one-stage reactor prove that the steam reforming of crude bio-oil in a two-stage fixed bed reaction system is necessary and significant.  相似文献   

8.
Pb, Sb, Bi and Te doped Ni catalysts were prepared and used for methane reforming with CO2 in order to diminish coke deposition. It was found that small amounts of Pb doped Ni catalysts exhibited excellent coke resistance ability with minor loss of the reforming activity. As the added amount of Pb increased from 0 to 0.015 (mole ratio between Pb/Ni), coke formation rate decreased from 166.7 mg-coke/g-cat h (on Ni/SiO2) to 0, while the reforming activity decreased slightly from 73.2% to 63.3% (conversion of CO2) at 800 °C, 60,000 ml(STP)/g-cat·h (CH4 CO2=1:1, no dilution gas in feed). Higher amounts of Pb and Sb, Bi, Te made Ni catalyst deactivated for methane reforming with CO2.  相似文献   

9.
Two pairs of raw and acid-washed coal samples were prepared from Yallourn and Loy Yang brown coals, and subjected to rapid pyrolysis in a drop-tube reactor at 1073-1173 K in a stream of N2 or H2O/N2 mixture. Examinations were made on the roles of the inherent metallic species in the secondary reactions of nascent tar and char that were formed by the intraparticle primary reactions. The experimental results revealed that the inherent metallic species were essential for vary rapid steam reforming/gasification of the nascent tar/char and simultaneous suppression of soot formation. In the absence of the metallic species, the soot formation from the tar accounted as much as 15-19 and 6-13% of the carbon in coal in N2 and H2O/N2, respectively. The metallic species reduced the yield of soot to 6-8% in N2 by enhancing the reforming of tar by H2O generated from the pyrolysis of coal. In the H2O/N2 stream, instead of soot formation, a net gasification conversion up to 17% within 4.3 s was observed in the presence of the metallic species as a result of catalytic gasification of the nascent char. Moreover, the metallic species catalyzed the steam reforming of the nascent tar, giving its conversion up to 99%. Over the range of the conditions employed, a one-to-one stoichiometry was established between the steam consumption and the yield of carbon oxides formed by the steam reforming/gasification and water-gas-shift reaction.  相似文献   

10.
CO2 reforming, oxidative conversion and simultaneous oxidative conversion and CO2 or steam reforming of methane to syngas (CO and H2) over NiO–CoO–MgO (Co: Ni: Mg=0·5: 0·5:1·0) solid solution at 700–850°C and high space velocity (5·1×105 cm3 g−1 h−1 for oxidative conversion and 4·5×104 cm3 g−1 h−1 for oxy-steam or oxy-CO2 reforming) for different CH4/O2 (1·8–8·0) and CH4/CO2 or H2O (1·5–8·4) ratios have been thoroughly investigated. Because of the replacement of 50 mol% of the NiO by CoO in NiO–MgO (Ni/Mg=1·0), the performance of the catalyst in the methane to syngas conversion process is improved; the carbon formation on the catalyst is drastically reduced. The CoO–NiO–MgO catalyst shows high methane conversion activity (methane conversion >80%) and high selectivity for both CO and H2 in the oxy-CO2 reforming and oxy-steam reforming processes at ⩾800°C. The oxy-steam or CO2 reforming process involves the coupling of the exothermic oxidative conversion and endothermic CO2 or steam reforming reactions, making these processes highly energy efficient and also safe to operate. These processes can be made thermoneutral or mildly exothermic or mildly endothermic by manipulating the process conditions (viz. temperature and/or CH4/O2 ratio in the feed). © 1998 Society of Chemistry Industry  相似文献   

11.
This work investigates the improvement of Ni/Al2O3 catalyst stability by ZrO2 addition for H2 gas production from CH4/CO2 reforming reactions. The initial effect of Ni addition was followed by the effect of increasing operating temperature to 500–700 °C as well as the effect of ZrO2 loading and the promoted catalyst preparation methods by using a feed gas mixture at a CH4:CO2 ratio of 1:1.25. The experimental results showed that a high reaction temperature of 700 °C was favored by an endothermic dry reforming reaction. In this reaction the deactivation of Ni/Al2O3 was mainly due to coke deposition. This deactivation was evidently inhibited by ZrO2, as it enhances dissociation of CO2 forming oxygen intermediates near the contact between ZrO2 and nickel where the deposited coke is gasified afterwards. The texture of the catalyst or BET surface area was affected by the catalyst preparation method. The change of the catalyst texture resulted from the formation of ZrO2–Al2O3 composite and the plugging of Al2O3 pore by ZrO2. The 15% Ni/10% ZrO2/Al2O3 co-impregnated catalyst showed a higher BET surface area and catalytic activity than the sequentially impregnated catalyst whereas coke inhibition capability of the promoted catalysts prepared by either method was comparable. Further study on long-term catalyst stability should be made.  相似文献   

12.
靳立军  李扬  胡浩权 《化工学报》2017,68(10):3669-3677
热解是实现煤清洁高效利用的重要途径之一。针对传统煤热解焦油收率低的现状,从煤热解反应机理出发,围绕甲烷催化/等离子体活化与煤热解过程耦合提高焦油收率的研究工作进行综述,重点介绍了甲烷部分氧化、甲烷二氧化碳重整、甲烷芳构化、甲烷水蒸气重整及甲烷等离子体活化与煤热解耦合过程特点以及对焦油产率的影响。结果显示,相对氮气和氢气气氛下热解,耦合过程焦油产率显著提高,并具有煤种普适性。同时借助同位素示踪技术对耦合过程焦油产率提高机理进行分析。结果表明,甲烷经催化/等离子体活化后产生的活性物质通过与煤热解形成的自由基结合,参与了焦油的形成,是焦油产率显著提高的根本原因。耦合反应器的设计和甲烷活化催化剂的开发是今后该过程工业应用的关键。  相似文献   

13.
煤快速热解固相和气相产物生成规律   总被引:4,自引:2,他引:4       下载免费PDF全文
利用能有效避免二次转化反应的高频炉热解装置对3种不同变质程度的煤进行了600~1200℃条件下的快速热解,考察了在煤热解最初阶段焦产率、焦-C产率、热解气产率、热解气4种主要组分H2、CO、CH4和CO2的比例以及热解气热值随煤阶和热解温度的变化规律。结果表明,焦的产率和焦-C的产率均随煤阶的升高而升高,热解气的产率随煤阶的升高而降低;热解温度的提高能显著降低煤焦和焦-C的产率并提高热解气的产率。热解气组分以H2相似文献   

14.
《Ceramics International》2023,49(15):25240-25245
Dry reforming of methane (CH4 + CO2 = 2CO + 2H2) is a very interesting approach both to reduce the overall carbon footprint of the increasing worldwide fossil-based methane consumption as well as to cut emission greenhouse gas of CO2. Utilizing the produced syngas as fuel directly in protonic ceramic fuel cell can further kill two birds with one stone: obtain power output and high purity CO. However, the drawback of the coking deposition limits the process of the above strategy. Here, we synthesis a Ni-based catalyst with high conversion rates (∼88% for CO2 and ∼89% for CH4) and excellent stability (>160 h at 700 °C) proceeded by Ce doping, and further employ it as reforming layer on solid oxide fuel cell. The results demonstrate that the Ce substitution plays an important role for homogenous Ni nanoparticles exsolution, benefiting for the coking resistance of the catalyst then the stability of the cell using CH4 and CO2 as fuel directly.  相似文献   

15.
Experimental work has been carried out on the mixed reforming reaction, i.e., simultaneous steam and CO2 reforming of methane under a wide range of feed compositions and four different reaction temperatures from 700 °C to 850 °C using a commercial steam reforming catalyst. The experiments were conducted for a CO2/CH4 ratio from 0 to 2 and a steam to methane ratio from 3 to 5. The effect of CO2/CH4 ratio on the exit H2/CO ratio and the conversions of the reactants indicate that the dry reforming reaction is dominant under increased carbon dioxide in the feed. Steam reforming of typical steam hydrogasification product gas consisting of CO, H2 and CO2 in addition to steam and methane has also been investigated. The H2/CO ratio of the product synthesis gas varies from 4.3 to 3.7 and from 4.8 to 4.1 depending on the feed composition and reaction temperature. The CO/CO2 ratios of the synthesis gas varied from 1.9 to 2.9 and 2.0 to 3.3. The results are compared with simulation results obtained through the Aspen Plus process simulation tool. The results demonstrate that a coupled steam hydrogasification and reforming process can generate a synthesis gas with a flexible H2/CO ratio from carbon-containing feedstocks.  相似文献   

16.
Dry reforming of methane was studied over Ni catalysts supported on γAl2O3, CeO2, ZrO2 and MgAl2O4 (670 °C, 1.5 bar, 16–20 l CH4 mlcatalyst−1 h−1). It is shown that MgAl2O4 supported Ni catalysts promoted with both CeO2 and ZrO2 are promising catalysts for dry reforming of methane with carbon dioxide. Within a certain composition range, the simultaneous promotion with CeO2 and ZrO2 has great influence on the amount of coke and the catalyst service time. XRD analyses indicate that formation of crystalline CexZr1−xO2 mixed oxide phases occurs on double promotion. In particular, incorporation of low amounts of Zr in the CeO2 fluorite structure provides stable dry reforming catalysis. As shown with TPR, promotion leads to a higher reduced state of Ni. SEM, XRD and TPR analyses demonstrate that highly dispersed, doubly promoted Ni catalysts with a strong metal-support interaction are essential for stable dry reforming and suppression of the formation of carbon filaments.  相似文献   

17.
Reduced NiO/MgO, with a NiO content in the range 9.2–28.6 wt%, was found to be a highly effective catalyst for the CO2 reforming of CH4 to CO and H2 (at 790°C, atmospheric pressure and a space velocity of 60000 cm3g–1h–1). For smaller or higher NiO contents, the yield was smaller, being negligible for 4.9 wt%. In contrast to the other reforming catalysts, the new catalyst has high stability, since in the optimum NiO range the CO yield remained unchanged at 95% for 120 h without any carbon deposition. The formation of a solid solution between NiO and MgO, which was demonstrated by both X-ray diffraction and temperature-programmed reduction, is most likely responsible for the high selectivity and stability in a large range of compositions of NiO/MgO.  相似文献   

18.
Ni‐Co bimetallic and Ni or Co monometallic catalysts prepared for CO2 reforming of methane were tested with the stimulated biogas containing steam, CO2, CH4, H2, and CO. A mix of the prepared CO2 reforming catalyst and a commercial steam reforming catalyst was used in hopes of maximizing the CO2 conversion. Both CO2 reforming and steam reforming of CH4 occurred over the prepared Ni‐Co bimetallic and Ni or Co monometallic catalysts when the feed contained steam. However, CO2 reforming did not occur on the commercial steam reforming catalyst. There was a critical steam content limit above which the catalyst facilitated no more CO2 conversion but net CO2 production for steam reforming and water‐gas shift became the dominant reactions in the system. The Ni‐Co bimetallic catalyst can convert more than 70% of CO2 in a biogas feed that contains ~33 mol% of CH4, 21.5 mol% of CO2, 12 mol% of H2O, 3.5 mol% of H2, and 30 mol% of N2. The H2/CO ratio of the produced syngas was in the range of 1.8‐2. X‐ray absorption spectroscopy of the spent catalysts revealed that the metallic sites of Ni‐Co bimetallic, Ni and Co monometallic catalysts after the steam reforming of methane reaction with equimolar feed (CH4:H2O:N2 = 1:1:1) experienced severe oxidation, which led to the catalytic deactivation.  相似文献   

19.
James H. Edwards  Ian W. Smith 《Fuel》1980,59(10):674-680
Flash pyrolysis of Loy Yang brown coal, and Liddell and Millmerran bituminous coals has been studied using a fluidized-bed reactor with a nominal throughput of 20 kg h?1. The apparatus and its performance are described. The yields of tar and hydrocarbon gases are reported for each coal in relation to pyrolysis temperature, as also are analytical data on the pyrolysis products. The peak tar yields for the dry, ash-free Loy Yang and Millmerran coals were respectively 23% wt/wt (at ≈ 580 °C) and 35% wt/wt (at $?600 °C). The tar yield from Liddell coal was 31% wt/wt at ≈ 580 °C. Hydro-carbon gases were produced in notable quantities during flash pyrolysis; e.g. Millmerran coal at 810 °C gave 6% wt/wt (daf) methane, 0.9% wt/wt ethane, 6% wt/wt ethylene, and 2.5% wt/wt propylene. The atomic HC ratios and the absolute levels of hydrogen in product tars and chars decreased steadily with increasing pyrolysis temperature.  相似文献   

20.
The CO2 reforming of methane over reduced NiO/MgO solid solution catalysts was studied at 800°C by a novel transient method, which couples a broadened pulse of CH4/CO2 with a step change to the carrier gas and/or with a sharp isotopic pulse of either 18O4, CO18 2 or 13CO16 2. The response curves indicated that two kinds of oxygen were formed over the catalysts during reaction: adsorbed oxygen which reacts fast with C species and lattice oxygen which reacts more slowly with C species. One concludes that a redox cycle of lattice oxygen formation through the oxidation of Ni and its reaction with C species takes place on the catalyst surface. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号