首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
This paper presents the transesterification of waste cooking palm oil (WCO) using activated carbon supported potassium fluoride catalyst. A central composite rotatable design was used to optimize the effect of molar ratio of methanol to oil, reaction period, catalyst loading and reaction temperature on the transesterification process. The reactor was pressurized up to 10 bar using nitrogen gas. All the variables were found to affect significantly the methyl ester yield where the most effective factors being the amount of catalyst and reaction temperature, followed by methanol to oil ratio. A quadratic polynomial equation was obtained for methyl ester yield by multiple regression analysis using response surface methodology (RSM). The optimum condition for transesterification of WCO to methyl ester was obtained at 3 wt.% amount of catalyst, 175 °C temperature, 8.85 methanol to oil molar ratio and 1 h reaction time. At the optimum condition, the predicted methyl ester yield was 83.00 wt.%. The experimental value was well within the estimated value of the model. The catalyst showed good performance with a high yield of methyl ester and the separation of the catalyst from the liquid mixture is easy.  相似文献   

2.
The development of a process that could recover biofuel from industrial cellulose waste can not only reduce the negative environmental impacts by using fossil fuels, but also bring a green idea for the waste's disposing. In this study, hydrothermal pretreatment was optimized for cassava anaerobic residue, a cellulosic waste from cassava ethanol industry, to co-utilize xylose and glucose for producing bioethanol. The effect of the main pretreatment conditions, namely, temperature, solid content and time, was explored for the highest recovery of xylose in prehydrolysate and glucose in enzymatic hydrolysate. The single factor experiment results showed that the conditions for maximum xylose recovery in prehydrolysate and glucose recovery in enzymatic hydrolysate were 60 °C, 75 min, 10% solids and 160 °C, 75 min, 10% solids, respectively. Whereafter, response surface methodology(RSM) was applied to further optimize the pretreatment conditions for the maximum theoretical ethanol production through utilizing both xylose and glucose. A treatment at 163 °C, for 59 min and with 9.5%solids was found optimal, with the highest ethanol production of 20.2 mg·g~(-1) raw material. Furthermore, in order to assess the impacts of the pretreatment on cassava anaerobic residue, the changes in crystallinity and morphology for untreated and pretreated solids were investigated.  相似文献   

3.
In this paper, the transesterification of soybean oil with ethanol is studied. The transesterification process can be affected by differing parameters. The biodiesel production process was optimized by the application of factorial design 24 and response surface methodology. The combined effects of temperature, catalyst concentration, reaction time and molar ratio of alcohol in relation to oil were investigated and optimized using response surface methodology. Optimum conditions for the production of ethyl esters were the following: mild temperature at 56.7 °C, reaction time in 80 min, molar ratio at 9:1 and catalyst concentration of 1.3 M.  相似文献   

4.
In the present study, biodiesel has been successfully produced from triglycerides and dimethyl carbonate, instead of the conventional alcohol. In this non-catalytic supercritical dimethyl carbonate (SCDMC) technology, valuable compound of glycerol carbonate is obtained as side product, rather than the undesirable glycerol. Glycerol carbonate has higher commercial value compared to glycerol and its application in industries is enormous. In this optimization study, the effects of important parameters including reaction temperature, molar ratio of dimethyl carbonate to oil and reaction time were investigated and optimized by employing response surface methodology (RSM) analysis. It was found that the mathematical model developed was statistically significant and adequate to predict the optimum yield. The optimum conditions for SCDMC process was found to be 380 °C for reaction temperature, 39:1 mol/mol of dimethyl carbonate to oil molar ratio and 30 min of reaction time to obtain 91% optimum yield of biodiesel.  相似文献   

5.
BACKGROUND: Crop residues as wheat straw are potential sources for fuel‐ethanol production as an alternative to current production based on starch‐ or sugar‐containing feedstocks. In this work, the effect of liquid hot water (LHW) process parameters, i.e. temperature (170 and 200 °C), residence time (0 and 40 min), solid concentration (5% and 10% (w/v)) and overpressure applied in the reactor (30 bar and no overpressure), on pretreatment of wheat straw was studied using a full factorial experimental design. Pretreatment effectiveness was evaluated based on the composition of the solid and liquid fractions obtained after filtration of pretreated material, and the susceptibility of the solid fraction to enzymatic hydrolysis (EH) using commercial cellulases. RESULTS: Statistical analysis showed that only temperature and time, within the limits of the experimental range, have a significant effect on the responses studied. While the effect of pretreatment time in hemicellulose‐derived sugar recovery in prehydrolyzate depends on temperature, EH yield was enhanced as both temperature and time were increased. Maximum EH yield was 96 g glucose per 100 g potential glucose in pretreated residue. Xylan and acetyl groups content remaining in solid residue after pretretament, which were found to be directly correlated, had a marked effect on pretreated substrate degradability. CONCLUSIONS: LHW is an effective pretreatment to enhance the potential of wheat straw as substrate for ethanol production. Maximum hemicellulose‐derived sugar recovery (53% of content in raw material) and EH yield (96% of theoretical) fall within different temperature and time intervals, suggesting separate optimization designs for these responses. Copyright © 2007 Society of Chemical Industry  相似文献   

6.
This work describes a laboratory method to synthesize aerosols with properties similar to those emitted by ocean going ships. In this method, an oxy-hydrogen flame burner nebulizes and combusts heavy fuel oil (HFO). The oil was fed to the burner via a syringe pump at a maximum rate of 15 ml/h. Adjusting the feed temperature of the oil and the use of a quenching ring in the burner, it is possible to obtain an aerosol with a mode diameter of about 11 nm. This is close to the reported 5–8 nm for the nano-mode of ship emissions. Filter samples were also analyzed for elemental carbon, organic carbon and anion composition. No elemental carbon mass was detected and only a few sulfur containing compounds were present. A chemical equilibrium model was applied for both oxy-hydrogen flame and 2-stroke ship diesel engine combustion conditions to predict equilibrium concentrations, chemical formula and phase of vanadium and nickel containing compounds. The model confirmed that the real-world ship diesel engine and the oxy-hydrogen flame burner combustion processes produced the same vanadium, nickel and sulfur particulate matter (PM) products in terms of chemical formula and phase. Both the 5–8 nm particles from real-world ship emissions and the laboratory synthesized particles contain transition metals. Transmission electron microscope (TEM) images of laboratory synthesized particles show similar morphology to those sampled from a ship. Cloud condensation nuclei (CCN) measurement indicates that neither laboratory generated nor ship emitted aerosol is hygroscopic. To our knowledge, this is the first time the 5–8 nm particles emitted from ships have been aptly synthesized on a laboratory scale.  相似文献   

7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号