共查询到20条相似文献,搜索用时 0 毫秒
1.
B.O. Oboirien A.D. EngelbrechtB.C. North Vivien M. du CannS Verryn R. Falcon 《Fuel Processing Technology》2011,92(4):735-742
The gasification characteristics of three South African bituminous coals were investigated in a bubbling fluidised bed reactor. The three coals are similar in rank, but two are inertinite-rich coals and the third has a high vitrinite content. The microstructural characteristics of the parent coals and their resultant chars were determined using XRD, FT-IR, Raman and petrographic analysis. The microstructural changes that occurred in the organic (maceral) and the inorganic (mineral) fractions of the selected coals were evaluated. The change in the carbon structure was correlated to the proportions of inertinite and vitrinite macerals in the coals. High vitrinite content resulted in an increase in the order of the disordered carbon structure after gasification and this leads to greater graphitised ordered carbon structures. While a high inertinite content resulted in low or no structural transformation of the chemical structure. The transformation of inorganic mineral constituents of the coal was correlated to the amount of inertinite present in the selected coals. Higher proportions of inertinite macerals and inertinitic chars resulted in higher proportions of melted minerals. Char samples with low proportions of organic matter resulted in higher proportion of melted minerals covering the char surface. 相似文献
2.
Closed system gold-tube pyrolysis experiments were performed on a peat and two coals (TY: Ro = 0.51%; SX: Ro = 0.94%) at temperatures ranging from 337 to 600 °C and a pressure of 50 MPa with heating rates of 2 and/or 20 °C/h. Solid reaction residues were analyzed microscopically. Yields and chemical and isotopic compositions of the generated gases were also determined. All three samples had similar thermal evolution pathways. With increasing heating temperature, vitrinite reflectances (VRr) of the residues increased linearly from 0.72% to 4.50%. This increase was lesser for the sample with a higher hydrocarbon generation potential and at faster heating rates. Gas compositions are dominated by CO2 and CH4 throughout the experimental process. Total gas and CH4 yields gradually increase with pyrolysis temperature for all samples. The carbon isotopic compositions of CH4 generated from the peat are lighter than those from the coals. The δ13CCH4 values exhibit a generic evolution pattern which the initial CH4 is isotopically heavy, then becomes lighter at moderate temperatures, and finally becomes heavier again. Methane produced from the samples at low heating rate has higher transformation ratio than that at high heating rate under the same temperature, so tends to be isotopically heavy after pyrolysis temperature of more than 408 °C. 相似文献
3.
Vitrinite and inertinite were separated by DGC from Chinese Shenmu bituminous coal and the structural characteristics of the macerals, before and after pyrolysis, were analyzed by ultimate analysis, FTIR and 13C NMR. The results showed that vitrinite chars always had higher H and lower C content than inertinite char at the same pyrolysis temperature. The FTIR and 13C NMR indicated that vitrinite had more aliphatic C-H, hydrogen bonding and lower aromaticity. With increasing temperature, the aliphatic C-H decreased, aromatic C-H, aromaticity and Har/Hal ratio increased. At the same temperature, inertinite always had higher Har/Hal ratio than vitrinite, which is consistent with that inertinite had higher aromaticity than vitrinite. And the Har/Hal ratio was also related to the remainder volatile matter. With increasing Har/Hal ratio, the remainder volatile matter in vitrinite and inertinite decreased. The higher aromaticity and Har/Hal ratio and lower H content of the inertinite in all temperature range were correlated with its higher thermal stability and lower volatile yield than vitrinite. 相似文献
4.
中药渣类高含水工业生物质废弃物能源化清洁处理技术开发尤为重要。本工作以中药渣为研究对象,结合热重表征手段,利用固定床对其进行热解特性研究。研究不同原料含水率、热解温度及热解速率下的热解产物产率分布及其成分和特性,及氮元素在气、液、固三相产物中分布规律。结果表明,该中药渣完全热解的温度范围为650~850℃。在此温度范围中升高温度有利于热解过程,提升了热解效率及可燃气品质,可燃气、半焦中的氮元素含量下降,热解油中的含量上升。降低含水率能够提高热解效率,热解油中含氮化合物含量增加,促使氮元素向液相迁移。中药渣烘干的过程中减少了碱金属含量,影响热解油组分。提高热解速率也能一定程度上影响热解产物组分及氮元素分布。本研究可为中药渣热解过程优化及含氮化合物排放控制提供理论基础。 相似文献
5.
Changes in the nitrogen functionality of 15N-enriched condensation products prepared from glucose and 15N-glycine were investigated during pyrolysis at 600–1000 °C. The structural changes in the condensation products were studied by means of solid-state 13C and 15N NMR spectroscopies. During pyrolysis, the aliphatic moieties of the condensation products decomposed and evolved as gas and tar. At pyrolysis temperatures above 600 °C, almost all the carbon in the chars were converted to aromatic carbon. After pyrolysis, large amounts of nitrogen remained in the chars as char nitrogen (char-N), and about 30% of the nitrogen was eliminated from the chars as HCN and NH3. With increasing temperature, the production of HCN and NH3 increased and the amount of char-N decreased. By combining X-ray photoelectron spectroscopy and NMR results, detailed results for nitrogen fractions in chars were obtained. During pyrolysis, the fraction of unsubstituted pyrrole-N decreased and the fraction of quaternary-N increased. The fraction of pyridine-N remained almost constant at temperatures below 800 °C, but at 900 °C and above, the fraction of pyridine-N decreased. The fraction of substituted pyrrole-N showed minimum at 800 °C. On the basis of these results, structural changes of nitrogen functional groups during pyrolysis are discussed. 相似文献
6.
The presented work aimed at investigating the course of basket willow hydrogasification and comparing that process to the hydrogasification of bituminous coal. The examinations focussed on basket willow (Salix viminalis), bituminous coal of low degree of metamorphism and their blends at the mass ratio 1:1. Measurements of evolution kinetics of gaseous hydrocarbons during hydrogasification of those materials were conducted in the atmosphere of hydrogen under the pressure of 2.5 MPa. In the investigations, the non-isothermal method was employed. The examined samples were heated from ambient temperature up to 1200 K at the rate of 3 K/min. 相似文献
7.
Study of the influence of pressure on enhanced gaseous hydrocarbon yield under high pressure-high temperature coal pyrolysis 总被引:1,自引:0,他引:1
The influence of pressure on the yield of gaseous hydrocarbon products derived from pyrolysis of Fushun and Xianfeng coals have been investigated in an anhydrous and confined system. Pyrolysis was performed in sealed gold tubes at 380 °C and under the pressures ranging from 50 to 250 MPa for 24 h. The results show that the effect of pressure on coal pyrolysis and product generation should not be ignored. For the Fushun and Xianfeng lignite, the yields of gaseous hydrocarbon generation increase by 9.1% and 12.7% when the pressure increases from 50 to 250 MPa, respectively. However, the yields of hydrogen gas decrease greatly with pressure. The hydrogen gas yields of Fushun and Xianfeng lignite decrease by 76.5% and 75.9%, respectively, when the pressure increases from 50 to 250 MPa. Yields of carbon dioxide gas of Fushun and Xianfeng coals were enhanced with increasing pressure by 7.4% and 8.9% respectively. Data of stable carbon isotope compositions reveal that the methane and ethane carbon isotope values are also affected by pressure, as they become heavier by approximately 1.2‰ (PDB) when the pressure is increased from 50 to 250 MPa. Simultaneously, the hydrogen isotope compositions of methane and ethane increase by 10.3‰ and 7.1‰, respectively. Our experimental results suggest that the increase in gaseous hydrocarbon yield is resulted from synthesis of carbon dioxide and hydrogen and pressure serves to facilitate the synthetic process. 相似文献
8.
9.
Activated carbons were obtained from Turkish coals by one-step steam pyrolysis process. The effect of the water vapor on the yield of the solid, liquid and gas products was studied. The presence of steam during pyrolysis-activation process contributes to distillation of low molecular weight products and reacts with the coal and the volatile products obtained during the pyrolysis. These processes lead to an increase in the yield of liquid and gas products and a decrease in the solid yield. The resulting carbons are determined to have good adsorption characteristics. 相似文献
10.
Modeling changes of fractal pore structures in coal pyrolysis 总被引:1,自引:0,他引:1
Yongli Chen 《Fuel》2011,90(2):499-504
Coal pyrolysis processes are numerically investigated in mathematically produced coal pore models which simulate real coal pores in the parameters of the porosity and fractal dimension. The simulations include FG-DVC chemical reaction model, gas molecular diffusion in pores, energy conservation model and coal swelling model. Numerical results are verified by experimental results qualitatively, and they revealed that both the porosity and volatile contents of the parent coal can affect the fractal dimension of the final char pores after pyrolysis linearly. A formula to predict the fractal dimension of char pores from its parent coal properties is obtained by curve fitting in numerous results. 相似文献
11.
For future power generation from coal, one preferred option in the UK is the air-blown gasification cycle (ABGC). In this system coal particles sized up to 3 mm, perhaps up to 6 mm in a commercial plant, are pyrolysed and then gasified in air/steam in a spouted bed reactor. As this range of coal particle sizes is large it is of interest to investigate the importance of particle size for those two processes. In particular the relation between the coal and the char particle size distribution was investigated to assess the error involved in assuming the coal size distribution at the on-set of gasification. Different coal size fractions underwent different changes on pyrolysis. Smaller coal particles were more likely to produce char particles larger than themselves, larger coal particles had a greater tendency to fragment. However, for the sizes investigated in this study ranging from 0.5 to 2.8 mm, the pyrolysis and gasification behaviour was found not to vary significantly with particle size. The coal size fractions showed similar char yields, irrespective of the different char size distributions resulting from pyrolysis. Testing the reactivity of the chars in air and CO2 did not reveal significant differences between size fractions of the char, nor did partial gasification in steam in the spouted bed reactor. From the work undertaken, it can be concluded that pyrolysis and gasification within the range of particle sizes investigated are relatively insensitive to particle size. 相似文献
12.
Behavior of trace elements during pyrolysis of coal in a simulated drop-tube reactor 总被引:1,自引:0,他引:1
Ruixia Guo 《Fuel》2004,83(6):639-643
Release behavior and chemical form distribution of As, Pb, Cr, Cd and Mn in Datong coal during pyrolysis was studied in a simulated drop-tube reactor at a heating rate of about 1000 °C/s, including effects of temperature (300-1000 °C), atmosphere (N2 and H2), and holding time (0.3-10 min). Results show that the bleeding ratios of As, Pb, Cr, Cd and Mn increase with increasing pyrolysis temperature and holding time. Reductive environment results in higher emission of the elements. Among the five trace elements, As, Pb and Cd show similar behavior with volatilities higher than that of Cr and Mn at 1000 °C. The five trace elements in the coal and coal-derived chars are separated into five fractions through an extraction procedure. Ion exchangeable form of the elements is not found in the coal and the chars, and the elements remained in the residue fraction is the most dominant occurrence form in the coal and the chars for As, Pb, Cd and Cr. All the forms for all the elements undergo transformation in the pyrolysis resulting in reduced content in the chars. 相似文献
13.
This paper describes desulfurization characteristics of low sulfur coals prior to combustion and optimum conditions of three
different desulfurization processes. These processes include two thermal treatment processes (mild pyrolysis and air oxidation)
and an H2O2 leaching process. Dual processes composed of thermal and leaching processes were also evaluated. Low sulfur coals employed
were two imported bituminous coals and two domestic anthracite coals. The optimum reaction temperatures and times of the thermal
processes were 500–550 °C and 15–20 minutes, respectively. The optimum condition for the leaching process was obtained when
the experiment carried out for 60 min at 90 °C using 30% H2O2. The dual process showed the best sulfur removal efficiency as expected among the evaluated processes.
This paper is dedicated to Professor Hyun-Ku Rhee on the occasion of his retirement from Seoul National University. 相似文献
14.
《Fuel Processing Technology》1997,50(2-3):117-130
The primary tars obtained by the Fischer-Schraeder method from coals described in earlier papers [1] were studied using infrared (i.r.) and 1H nuclear magnetic resonance (nmr) spectroscopy methods. With the object of achieving a broader evaluation of the properties and structure of these primary tars with increase in coalification of the parent coals—from 78 to 86% Cdaf, in the range from gasflame (according to Polish classification) 611-VII (according to international classification and statistical groups) to orthocoking 435-VB coals—they were distilled to the temperature of 543 K under normal pressure. Products obtained were also analysed by the i.r. and 1H nmr spectroscopy methods, while the distillates/fraction boiling up to 543 K/were additionally analysed by the gas chromatography-mass spectrometry (g.c.-m.s.) and 13C nmr methods. A comparative X-ray analysis of the coals and the semi-cokes obtained from them was also conducted. 相似文献
15.
以竹材、稻壳、木屑为原料,通过常规热解结合快速热解研究生物质热解特性。结果表明,生物质常规热解的液体得率较低,相比而言竹材最高,稻壳最低,且热解温度是影响竹材和木屑热解的主要因素,其液体得率随温度的升高呈先增后减的变化规律;快速热解方面,利用居里点裂解仪和GC—MS在线分析竹材热解的液相组成,其组成以糠醛和酚类物质为主,它们分别来源于纤维素、半纤维素和木质素的热解。 相似文献
16.
Two cyclic amides, 2-pyridone and 2,5-diketopiperazine (DKP), were pyrolysed at temperatures ranging from 700 to 1100 °C. Pyridone is the only one of the four main nitrogen functionalities found in coal that is likely to form HNCO under pyrolysis. DKP is a primary pyrolysis product from proteins, which are the main nitrogen source in biomass. The formation of HNCO from biomass has been suggested to originate from DKP and other cyclic amides. The aromatic 2-pyridone was thermally more stable than the non-aromatic DKP. Both amides formed HCN, HNCO and NH3. The NH3 yields, about 3-4% for 2-pyridone and 10% for DKP, were almost independent of temperature. The HCN yield on the other hand showed strong temperature dependence and increased with temperature for both of the cyclic amides. The HNCO yield decreased with increasing temperature for DKP over the whole temperature interval. For 2-pyridone, the pyrolysis was incomplete at the lowest temperature in the investigation. Between 900 and 1100 °C, the pyrolysis of 2-pyridone was complete and the HNCO yield decreased with increasing temperature. The HNCO/HCN ratio for both of the cyclic amides decreased with increasing temperature over the whole investigated temperature range. The finding in literature that the HNCO formation from cracking of coal tars produced a maximum HNCO yield at an intermediate temperature, is explained by the thermal stability of pyridone at low temperatures and the selectivity towards HCN at high temperatures. 相似文献
17.
《Fuel》2002,81(11-12):1551-1557
The New Energy and Industrial Technology Development Organization (NEDO) has implemented the collaborative research work with China Coal Research Institute (CCRI) on the liquefaction of Chinese coals for about 20 years. A total of 53 runs in a 0.1 t/d bench scale coal liquefaction plant installed at the CCRI were made on 27 kinds of coal selected among coals existing throughout China. The bench plant was operated in a direct hydrogenation (DH) mode and NEDOL mode. In the DH mode, 25 MPa of reaction pressure was employed with decrystallized anthracene oil used as the solvent, while 17 MPa of reaction pressure was employed and hydrogenated solvent was used in the NEDOL mode. This study confirmed that the NEDOL mode, which uses comparatively mild in liquefaction conditions, can liquefy each coal with the high oil yield more efficiently, and is capable of liquefying about 60% of inertinite in high inertinite coals. 相似文献
18.
以管式电炉为热解室,改变热解终温,在惰性气氛下对无烟煤与烟煤的混煤进行快速加热条件下的热解。采用低温氮气吸附方法研究混煤焦表面形态的变化规律。通过对吸附等温线的分析,表明煤焦具有连续、完整的孔隙结构,无定形孔的存在使得吸附迴线存在不闭合的状态。随着热解终温的升高,混煤焦的比表面积先增加后减小;随着烟煤掺混比例的增加,混煤焦的微孔容积和表面积也先增加后减小,A1B2混煤焦具有最大微孔容积和表面积。对煤焦孔隙的分形研究发现煤焦孔隙分形维数与微孔结构关系密切。混煤焦表面形态的变化规律体现了混煤热解的独立性以及相互作用。 相似文献
19.
Change of pyrolysis characteristics and structure of woody biomass due to steam explosion pretreatment 总被引:1,自引:0,他引:1
Amit Kumar Biswas Kentaro Umeki Weihong Yang Wlodzimierz Blasiak 《Fuel Processing Technology》2011,92(10):1849-1854
Steam explosion (SE) pretreatment has been implemented for the production of wood pellet. This paper investigated changes in biomass structure due to implication of steam explosion process by its pyrolysis behavior/characteristics. Salix wood chip was treated by SE at different pretreatment conditions, and then pyrolysis characteristic was examined by thermogravimetric analyzer (TGA) at heating rate of 10 K/min. Both pyrolysis characteristics and structure of biomass were altered due to SE pretreatment. Hemicellulose decomposition region shifted to low temperature range due to the depolymerization caused by SE pretreatment. The peak intensities of cellulose decreased at mild pretreatment condition while they increased at severe conditions. Lignin reactivity also increased due to SE pretreatment. However, severe pretreatment condition resulted in reduction of lignin reactivity due to condensation and re-polymerization reaction. In summary, higher pretreatment temperature provided more active biomass compared with milder pretreatment conditions. 相似文献
20.
《Fuel》1986,65(9):1305-1309
A tendency of sulphur increasing gradually in Chinese coals from the north to the south of China has been noted. The sulphur content of coal series of transition facies, formed in the late Carboniferous period in the north and the late Permian period in the south, is fairly high (2–6%). Pyrite is the main form of sulphur in Chinese coals; it makes up two-thirds of the total sulphur, and organic sulphur accounts for about one-third. 相似文献