首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The speed of sound was measured in gaseous nitrogen trifluoride, ethylene oxide, and trimethyl gallium using a highly precise acoustic resonance technique. The measurements span the temperature range 200 to 425 K and reach pressures up to the lesser of 1500 kPa or 80% of the sample vapor pressure. The speed-of-sound measurements have a relative standard uncertainty of less than 0.01%. The data were analyzed to obtain the constant-pressure ideal-gas heat capacity C 0 p as a function of temperature with a relative standard uncertainty of 0.1%. The values of C 0 p are in agreement with those determined from spectro- scopic data. The speed-of-sound data were fitted by virial equations of state to obtain temperature-dependent density virial coefficients. Two virial coefficient models were employed, one based on square-well intermolecular potentials, and the second based on a hard-core Lennard-Jones intermolecular potential. The resulting virial equations reproduced the sound-speed data to within ±0.02%, and may be used to calculate vapor densities with relative standard uncertainties of 0.1% or less.  相似文献   

2.
Thermophysical Properties of Chlorine from Speed-of-Sound Measurements   总被引:1,自引:0,他引:1  
The speed of sound was measured in gaseous chlorine using a highly precise acoustic resonance technique. The data span the temperature range 260 to 440 K and the pressure range 100 kPa to the lesser of 1500 kPa or 80% of the sample's vapor pressure. A small correction (0.003 to 0.06%) to the observed resonance frequencies was required to account for dispersion caused by the vibrational relaxation of chlorine. The speed-of-sound measurements have a relative standard uncertainty of 0.01%. The data were analyzed to obtain the ideal-gas heat capacity as a function of the temperature with a relative standard uncertainty of 0.1%. The reported values of C o p are in agreement with those determined from spectroscopic data. The speed-of-sound data were fitted by virial equations of state to obtain the temperature dependent density virial coefficients. Two virial coefficient models were employed, one based on square-well intermolecular potentials and the second based on a hard-core Lennard–Jones intermolecular potential. The resulting virial equations reproduced the sound speed data to within 0.01% and may be used to calculate vapor densities with relative standard uncertainties of 0.1% or less.  相似文献   

3.
The speed of sound in gaseous hydrogen bromide (HBr) and boron trichloride (BCl3) was measured using a highly precise acoustic resonance technique. The HBr speed-of-sound measurements span the temperature range 230 to 440 K and the pressure range from 0.05 to 1.5 MPa. The BCl3 speed-of-sound measurements span the temperature range 290 to 460 K and the pressure range from 0.05 MPa to 0.40 MPa. The pressure range in each fluid was limited to 80% of the sample vapor pressure at each temperature. The speed-of-sound data have a relative standard uncertainty of 0.01%. The data were analyzed to obtain the ideal-gas heat capacities as a function of temperature with a relative standard uncertainty of 0.1%. The heat capacities agree with those calculated from spectroscopic data within their combined uncertainties. The speeds of sound were fitted with the virial equation of state to obtain the temperature-dependent density virial coefficients. Two virial coefficient models were employed, one based on the hard-core square-well intermolecular potential model and the second based on the hard-core Lennard–Jones intermolecular potential model. The resulting virial equations of state reproduced the speed-of-sound measurements to 0.01% and can be expected to calculate vapor densities with a relative standard uncertainty of 0.1%. Transport properties calculated from the hard-core Lennard–Jones potential model should have a relative standard uncertainty of 10% or less.  相似文献   

4.
The speed of sound was measured in gaseous WF6 using a highly precise acoustic resonance technique. The data span the temperature range from 290 to 420 K and the pressure range from 50 kPa to the lesser of 300 kPa or 80% of the sample's vapor pressure. At 360 K and higher temperatures, the data were corrected for a slow chemical reaction of the WF6 within the apparatus. The speed-of-sound data have a relative standard uncertainty of 0.005%. The data were analyzed to obtain the ideal-gas heat capacity as a function of the temperature with a relative standard uncertainty of 0.1%. These heat capacities are in reasonable agreement with those determined from spectroscopic data. The speed-of-sound data were fitted by virial equations of state to obtain the temperature dependent density virial coefficients. Two virial coefficient models were employed, one based on square-well intermolecular potentials and the second based on a hard-core Lennard–Jones intermolecular potential. The resulting virial equations reproduced the sound-speed data to within ±0.005% and may be used to calculate vapor densities with relative standard uncertainties of 0.1% or less. The hard-core Lennard–Jones potential was used to estimate the viscosity and the thermal conductivity of dilute WF6. The predicted viscosities agree with published data to within 5% and can be extrapolated reliably to higher temperatures.  相似文献   

5.
The viscosity and speed of sound of gaseous nitrous oxide and nitrogen trifluoride were measured using a Greenspan acoustic viscometer. The data span the temperature range 225–375 K and extend up to 3.4 MPa. The average relative uncertainty of the viscosity is 0.68% for N2O and 1.02% for NF3. The largest relative uncertainties were 3.09 and 1.08%, respectively. These occurred at the highest densities (1702 mol · m-3 for N2O and 2770 mol · m-3 for NF3). The major contributor to these uncertainties was the uncertainty of the thermal conductivity. The speeds of sound measured up to 3.4 MPa are fitted by a virial equation of state that predicts gas densities within the uncertainties of the equations of states available in the literature. Accurate measurements of the speed of sound in both N2O and NF3 have been previously reported up to 1.5 MPa. The current measurements agree with these values with maximum relative standard deviations of 0.025% for N2O and 0.04% for NF3.  相似文献   

6.
A cylindrical resonator was employed to measure the sound speeds in gaseous CF4 and C2F6. The CF4 measurements span the temperature range 300 to 475 K, while the C2F6 measurements range from 210 to 475 K. For both gases, the pressure range was 0.1 MPa to the lesser of 1.5 MPa or 80% of the sample’s vapor pressure. Typically, the speeds of sound have a relative uncertainty of less than 0.01 % and the ideal-gas heat capacities derived from them have a relative uncertainty of less than 0.1%. The heat capacities agree with those determined from spectroscopic data. The sound speeds were fitted with the virial equation of state to obtain the temperature-dependent density virial coefficients. Two models for the virial coefficients were employed, one based on square-well potentials and the second based on a Kihara spherical-core potential. The resulting virial equations reproduce the sound-speed measurements to within 0.005 % and yield densities with relative uncertainties of 0.1% or less. The viscosity calculated from the Kihara potential is 2 to 11% less than the measured viscosity.  相似文献   

7.
The second virial coefficients, B, for difluoromethane (R-32, CH2F2) and pentafluoroethane (R-125, CF3CHF2) are derived from speed-of-sound data measured at temperatures from 273 to 343 K with an experimental uncertainty of ±0.0072%. Equations for the second virial coefficients were established, which are valid in the extensive temperature ranges from 200 to 400 K and from 240 to 440 K for R-32 and R-125, respectively. The equations were compared with theoretically derived second virial coefficient values by Yokozeki. A truncated virial equation of state was developed using the determined equation for the virial coefficients. The virial equation of state represents our speed-of-sound data and most of the vapor PT data measured by deVries and Tillner-Roth within ±0.01 and ±0.1%, respectively.  相似文献   

8.
Measurements of the speed of sound in seven halogenated hydrocarbons are presented. The compounds in this study are 1-chloro-1,2,2,2-tetrafluoroethane (CHClFCF3 or HCFC-124), pentafluoroethane (CHF2 CF3 or HFC-125), 1,1,1-trifluoroethane (CF3CH3 or HFC-143a), 1,1-difluoroethane (CHF2CH3 or HFC-152a), 1,1,1,2,3,3-hexafluoropropane (CF3CHFCHF2 or HFC-236ea), 1,1,1,3,3,3-hexafluoropropane (CF3CH2CF3 or HFC-236fa), and 1,1,2,2,3-pentafluoropropane (CHF2CF2CH2F or HFC-245ca). The measurements were performed with a cylindrical resonator at temperatures between 240 and 400 K and at pressures up to 1.0 MPa. Ideal-gas heat capacities and acoustic virial coefficients were directly deduced from the data. The ideal-gas heat capacity of HFC-125 from this work differs from spectroscopic calculations by less than 0.2% over the measurement range. The coefficients for virial equations of state were obtained from the acoustic data and hard-core square-well intermolecular potentials. Gas densities that were calculated from the virial equations of state for HCFC-124 and HFC-125 differ from independent density measurements by at most 0.15%, for the ranges of temperature and pressure over which both acoustic and Burnett data exist. The uncertainties in the derived properties for the other five compounds are comparable to those for HCFC-124 and HFC-125.  相似文献   

9.
This paper presents experimental results for the trifluoromethane (R23) + nitrous oxide (N2O) system, which has been chosen as a working fluid for low-temperature applications since it might be a valid option for the low-temperature stage in a cascade cycle. The thermodynamic properties of the binary mixture’s constituents are well known from the literature, but no experimental results have been published to date on the PVTx properties of this binary system. PVTx measurements were obtained for the binary R23 + N2O system for three isotherms (303, 323, and 343 K), performing 15 Burnett expansions in a range of pressures from about 4400 to 80 kPa. The second and third virial coefficients were derived from experimental results together with the second and third cross virial coefficients. The experimental uncertainties in the second and third virial coefficients were estimated to be within ±1 cm3·mol−1 and ±500 cm6·mol−2, respectively.Paper presented at the Seventeenth European Conference on Thermophysical Properties, September, 5-8, 2005, Bratislava, Slovak Republic.  相似文献   

10.
Final values of ideal-gas heat capacity c 0 p derived from speed-of-sound measurements using an acoustic spherical resonator and equations of c 0 p as a simple function of temperature are provided from an overall assessment of speed-of-sound measurements for five hydrofluorocarbon (HFC) refrigerants, difluoromethane (R32), pentafluoroethane (R125), 1,1,1,2-tetrafluoroethane (R134a), 1,1,1-trifluoroethane (R143a), and 1,1-difluoroethane (R152a). Some of the experimental results had systematic errors in comparison with theoretical calculations based on spectroscopic data, which seem to result from the impurity of the sample fluids. The agreement of the experimentally determined and theoretically calculated c 0 p values was confirmed for HFC refrigerants. The uncertainty of c 0 p values calculated from the proposed equations is estimated to be 0.1 or 0.2% corresponding to an ISO uncertainty with a coverage factor of k=1. An erratum for Table I in a previous report by Yokozeki et al. in 1999 is provided as an appendix.  相似文献   

11.
Ideal-Gas Heat Capacities and Virial Coefficients of HFC Refrigerants   总被引:2,自引:0,他引:2  
Thermodynamic properties of HFC (hydrofluorocarbon) compounds have been extensively studied with worldwide interest as alternative refrigerants. Both quality and quantity in the experimental data far exceed those for the CFC and HCFC refrigerants. These data now provide a great opportunity to examine the validity of theoretical models, and vice versa. Among them, the ideal-gas heat capacity C p 0 and virial coefficients derived from the experimental data are of particular interest, since they are directly related to the intramolecular and intermolecular potentials through the statistical mechanical procedure. There have been some discrepancies reported in the observed and theoretical C p 0 for HFC compounds. We have performed new calculations of C p 0 for several HFCs. The present results are consistent with the selected experimental values. The second (B) and third (C) virial coefficients have been reported for these HFC refrigerants from speed of sound data and Burnett PVT data. Often, a square well-type intermolecular potential is employed to correlate the data. However, the model potential cannot account consistently for both B and C coefficients with the same potential parameters. We have analyzed the data with the Stockmayer potential and obtained self-consistent results for various HFC (R-23, R-32, R-125, R-134a, R-143a, and R-152a) compounds with physically reasonable potential parameters.  相似文献   

12.
随着国家超低排放政策的深入,对烟气中污染物浓度精确测量提出了更高的要求。基于傅里叶红外光谱仪建立了高温含水条件下一氧化氮(NO)气体精确测量系统,在191℃条件下测量了含5%~20%水蒸气与摩尔分数为5~40μmol/mol NO混合前后的吸收光谱,通过修正混合物中H2O的吸光度来精确确定NO浓度,并评价了系统测量不确定度。结果表明:NO在高温含水条件下测量结果与标准气体量值相对偏差小于1.8%,测量的扩展相对标准不确定度最大为2.8%(k=2),此系统具有良好的测量准确性和稳定性,对国家超低排放政策的执行和环保税的征收具有重要意义。  相似文献   

13.
A new thermodynamic property formulation based upon a fundamental equation explicit in Helmholtz energy of the form A=A(, T) for ethylene from the freezing line to 450 K at pressures to 260 MPa is presented. A vapor pressure equation, equations for the saturated liquid and vapor densities as functions of temperature, and an equation for the ideal-gas heat capacity are also included. The fundamental equation was selected from a comprehensive function of 100 terms on the basis of a statistical analysis of the quality of the fit. The coefficients of the fundamental equation were determined by a weighted least-squares fit to selected P--T data, saturated liquid and saturated vapor density data to define the phase equilibrium criteria for coexistence, C v data, velocity of sound data, and second virial coefficients. The fundamental equation and the derivative functions for calculating internal energy, enthalpy, entropy, isochoric heat capacity (C v), isobaric heat capacity (C p), and velocity of sound are included. The fundamental equation reported here may be used to calculate pressures and densities with an uncertainty of ±0.1%, heat capacities within ±3 %, and velocity of sound values within ±1 %, except in the region near the critical point. The fundamental equation is not intended for use near the critical point. This formulation is proposed as part of a new international standard for thermodynamic properties of ethylene.Paper presented at the Ninth Symposium on Thermophysical Properties, June 24–27, 1985, Boulder, Colorado, U.S.A.  相似文献   

14.
Silicon oxide (SiOx) thin films have been deposited at a substrate temperature of 300 °C by inductively-coupled plasma chemical vapor deposition (ICP-CVD) using N2O/SiH4 plasma. The effect of N2O/SiH4 flow ratios on SiOx film properties and silicon surface passivation were investigated. Initially, the deposition rate increased up to the N2O/SiH4 flow ratio of 2/1, and then decreased with the further increase in N2O/SiH4 flow ratio. Silicon oxide films with refractive indices of 1.47-2.64 and high optical band-gap values (>3.3 eV) were obtained by varying the nitrous oxide to silane gas ratios. The measured density of the interface states for films was found to have minimum value of 4.3 × 1011 eV−1 cm−2. The simultaneous highest τeff and lowest density of interface states indicated that the formation of hydrogen bonds at the SiOx/c-Si interface played an important role in surface passivation of p-type silicon.  相似文献   

15.
Since 2000, atomic physicists have reduced the uncertainty of the helium-helium “ab initio” potential; for example, from approximately 0.6 % to 0.1 % at 4 bohr, and from 0.8 % to 0.1 % at 5.6 bohr. These results led us to: (1) construct a new inter-atomic potential ϕ07, (2) recalculate values of the second virial coefficient, the viscosity, and the thermal conductivity of 4He from 1 K to 10,000 K, and (3), analyze the uncertainties of the thermophysical properties that propagate from the uncertainty of ϕ07 and from the Born-Oppenheimer approximation of the electron-nucleon quantum mechanical system. We correct minor errors in a previous publication [J. J. Hurly and M. R. Moldover, J. Res. Nat. Inst. Standards Technol. 105, 667 (2000)] and compare our results with selected data published after 2000. The ab initio results tabulated here can serve as standards for the measurement of thermophysical properties.  相似文献   

16.
J.P. Xu  P.T. Lai  C.X. Li 《Thin solid films》2009,517(9):2892-2895
Annealing of high-permittivity HfTiO gate dielectric on Ge substrate in different gases (N2, NH3, NO and N2O) with or without water vapor is investigated. Analysis by transmission electron microscopy indicates that the four wet anneals can greatly suppress the growth of a GeOx interlayer at the dielectric/Ge interface, and thus decrease interface states, oxide charges and gate leakage current. Moreover, compared with the wet N2 anneal, the wet NH3, NO and N2O anneals decrease the equivalent permittivity of the gate dielectric due to the growth of a GeOxNy interlayer. Among the eight anneals, the wet N2 anneal produces the best dielectric performance with an equivalent relative permittivity of 35, capacitance equivalent thickness of 0.81 nm, interface-state density of 6.4 × 1011 eV− 1 cm− 2 and gate leakage current of 2.7 × 10− 4 A/cm2 at Vg = 1 V.  相似文献   

17.
We consider the feasibility of basing a pressure standard on measurements of the dielectric constant ϵ and the thermodynamic temperature T of helium near 0 °C. The pressure p of the helium would be calculated from fundamental constants, quantum mechanics, and statistical mechanics. At present, the relative standard uncertainty of the pressure ur(p) would exceed 20 × 10−6, the relative uncertainty of the value of the molar polarizability of helium Aϵ calculated ab initio. If the relativistic corrections to Aϵ were calculated as accurately as the classical value is now known, a capacitance-based pressure standard might attain ur(p) < 6 × 10−6 for pressures near 1 MPa, a result of considerable interest for pressure metrology. One obtains p by eliminating the density from the virial expansions for p and ϵ − 1. If ϵ − 1 were measured with a very stable, 0.5 pF toroidal cross capacitor, the small capacitance and the small values of ϵ − 1 would require state-of-the-art capacitance measurements to achieve a useful pressure standard.  相似文献   

18.
A fundamental equation of state for pentafluoroethane was established on the basis of not only assessment of the experimental data but also by introducing parameters for virial coefficients having a theoretical background in statistical thermodynamics. The equation of state has a range of validity for temperatures from the triple point up to 500 K and pressures up to 70 MPa. The estimated uncertainties of the equation are 0.1% for the vapor pressure, 0.15% in density for the saturated-liquid phase, 0.5% in density for the saturated-vapor phase, 0.1% in density for the liquid phase, 0.1% in pressure for the gaseous phase, 0.5% in density for the supercritical region, 0.01% in speed of sound for the gaseous phase, 0.9% in speed of sound for the liquid phase, 0.5% in isobaric specific heat for the liquid phase, and 1.2% in isochoric specific heat for the liquid phase. The derived specific heats in the gaseous phase are close to the values from the virial equation of state with the second and third virial coefficients derived from intermolecular potential models and precise speed-of-sound measurements.  相似文献   

19.
This paper presents a procedure for predicting the equation of state of mercury, by including mercury in the scope of a new statistical mechanical equation of state that is known for normal fluids. The scaling constants are the latent heat of vaporization and the density at the melting temperature, which are related to the cohesive energy density. Since experimental data for the second virial coefficient of mercury are scarce, a corresponding-states correlation of normal fluids is used to calculate theB(T) of mercury. The free parameter of the ISM equation, λ, compensates for the uncertainties inB(T). Also, we can predict the values of two temperature-dependent parameters, α(T) andb(T), with satisfactory accuracy from a knowledge of ΔH vap andp m, without knowing any details of the intermolecular potentials. While the values ofB(T) are scarce for mercury and the vapor pressure of this metal at low temperatures is very small, an equation of state for mercury from two scaling parameters (ΔH vap,p m) predicts the density of Hg from the melting point up to 100° above the boiling temperature to within 5%.  相似文献   

20.
2nd-derivative Auger electron spectra analyses and time-of-flight secondary ion mass spectroscopy depth profiles are employed for analyzing quantitatively chemical compositions in ultra-thin oxide-nitride-oxide (ONO) stacked films. Tunnel oxide of 2.3 nm is grown on silicon substrate in nitrogen-diluted oxygen ambient. Nitride of 5.7 nm is immediately deposited on the tunnel oxide by a low-pressure chemical vapor deposition. Blocking oxide is subsequently grown by oxidizing the oxide-nitride structure in a wet O2 ambient. Some chemical mixing occurs during the ONO formation. That is, the tunnel oxide formed on the silicon substrate changes into SiO1.11N0.67 by nitrogen substitution. Oxygen diffuses into the nitride layer, and converts some of the nitride layer into SiO1.11N0.67 during wet oxidation. We think the SiON and Si2NO species exist near the tunnel oxide-nitride and the nitride-blocking oxide interfaces are segments of the Si2N2O. These are evidence of dangling bonds as unstable chemical species which may act as charge traps in the oxide-nitride interfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号