首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to investigate a mechanism which causes a velocity difference between the longitudinal wave and leaky surface skimming compressional wave (LSSCW) observed in a line-focus-beam acoustic microscope, the analytic property of an acoustic reflection coefficient and its effect on a V(z) analysis were studied. A pole hidden in the unphysical Riemann sheet close to the longitudinal branch point is found to be responsible for the abrupt phase change at the longitudinal critical angle. This, together with an effect of a dominant Rayleigh wave pole, affects the V(z) measurement of the LSSCW. A method to estimate the longitudinal and shear wave velocities is discussed  相似文献   

2.
This work aims at establishing the effect of stress and temperature on the velocity of ultrasonic longitudinal waves in typical engineering polymers, and evaluating the potential of ultrasonic stress measurement in the evaluation of residual stresses in polymer parts. In order to estimate the effect of material morphology, two amorphous and two semicrystalline polymers have been considered. A series of tests are implemented, to determine the acoustoelastic constants and temperature constant of materials, by using the designed transducer fixtures for in situ measurement of longitudinal wave velocity. As expected, the velocity changes linearly with stress and temperature, and the temperature effect is as important as the acoustoelastic effect. It shows that this kind of nondestructive method is a valuable quantitative tool to estimate the residual stress in polymer products, but the material temperature influence must be considered during the estimation.  相似文献   

3.
声发射传感器的校准是实现声发射定量技术的前提,依据电声换能器互易原理,在计算互易常数的基础 上,建立了适用于压电型声发射传感器表面波和纵波互易的校准系统。通过设置特定的激励信号波形,依据接收 电压信号与激励电流信号之间的时间延迟,准确获取电流信号与电压信号对应的特征值,实现了声发射传感器的表面波和纵波互易校准。由于传感器的尺寸效应,传感器在高频时的表面波速度灵敏度低于纵波灵敏度,不确定度评定结果表明,声发射传感器速度灵敏度的互易法校准不确定度为1. 2 dB。  相似文献   

4.
基于瑞利波声弹效应理论,在瑞利波无损表征45钢表层应力的基础上分析了45钢表层初始应力状态对应力评价结果的影响。采用声程固定不变中心频率为5MHz的双瑞利波探头对45钢表层应力进行评价,在归一化互相关函数基础上计算了应力引起的瑞利波信号间时间差。结果表明:初始应力不会影响瑞利波在45钢表层中传播速度随拉伸应力的变化规律,即随拉伸应力的增加,瑞利波在45钢表层中的传播速度基本呈线性规律增加,当应力达到一定值时,再随应力的增加,瑞利波传播速度不再呈线性规律变化;但初始应力和去应力退火状态45钢的名义瑞利波声弹性系数不同,分别为0.838和1.041,最大时间差对应的应力值也不同,去应力退火前后应力评价结果的误差约为22%。  相似文献   

5.
斜探头在某些频率下激励出的兰姆波,其群速度与体波的传播速度相近,所以通过判断传播速度不易区分出兰姆波和体波。通过数值模拟和实验,分别研究了激励频率为2 MHz的纵波和S0模态兰姆波在阶梯板上的反射特性,发现:在阶梯板上入射S0模态兰姆波时,有反射回波;而入射纵波时,无反射回波。基于这种反射特性的差别,提出了一种利用阶梯板区别薄板中兰姆波和体波的方法,该方法可用于确认探头的激励特性。  相似文献   

6.
轴对称载荷是管道中轴对称模态导波激励的有效方法。然而,受换能器安装误差等因素的影响,激励载荷多会变为非轴对称载荷,进而使激励出的导波模态变得复杂。对非轴对称多元载荷条件下纵向模态导波的激励问题进行了深入研究。考虑两种典型的非轴对称载荷,采用简正模态展开技术,建立了导波激励声场与边界载荷的量化关系,进而分析了各模态导波的产生机理及载荷阵列对纵向导波激励的影响。采用有限元数值模拟验证了理论预测结果。考虑实际管道检测中出现的非轴对称载荷,提出了一种载荷补偿策略并进行了实验验证。结果表明,该方法能够有效抑制弯曲模态导波的产生,同时也有助于改善导波信号的噪声水平。  相似文献   

7.
For object materials having a large enough Rayleigh velocity, the V(z) (where V is the output voltage and z is the defocus distance) variation is mainly due to interference between the fields of the geometrically reflected wave and the leaky Rayleigh wave. However, for materials, such as organic compounds, having a low Rayleigh velocity, the leaky Rayleigh wave is not excited. For this case, the lateral wave resulting from propagation along the surface of the longitudinal wave plays a significant role in determining the V(z) dependence. The effect of the lateral wave contribution on V(z) is studied. Ray optics is to derive an expression giving the influence of the longitudinal lateral wave. Good agreement is found between the theory and measurements for z not near zero. Because of the ease with which the longitudinal wave velocity can be obtained from V(z), one can conveniently determine the elastic constant c(11 ) of isotropic materials using the acoustic microscope.  相似文献   

8.
In this paper, a lensless line-focus poly(vinylidene fluoride trifluoroethylene) [P(VDF-TrFE)] ultrasound transducer and its \(V(f, z)\) defocusing measurement system have been applied to measure the acoustoelastic effect of Rayleigh wave propagating inside a plastically deformed silicon steel. The silicon steel sheets are subjected to uni-axial tensile loading so that different levels of permanent deformation ranging from 5 to 30 % are created. Since the ultrasound transducer is line-focused, Rayleigh wave velocities on each of the plastically deformed silicon steel samples can be measured along various directions relative to the loading direction. Finally, the correlation between Rayleigh wave velocity and plastic deformation is experimentally established in a direct, easy, and accurate way. The experimental results can then be used for the purpose of non-destructive evaluation of silicon steels which are widely used in industry.  相似文献   

9.
An ultrasonic technique to determine the acoustoelastic coefficients of Rayleigh waves in steel alloys is described. The technique is based on the measurement of the time of flight of Rayleigh waves over a fixed surface distance as a function of applied stress. Measurements on AISI 1080 carbon steel, AISI 4130 alloy steel, and 316L stainless steel specimens are reported. Time of flight resolution and repeatability as well as temperature effects are discussed insofar as they influence the applicability of ultrasonic methods to the measurement of applied and residual biaxial surface stresses in steel.  相似文献   

10.
A method for designing frequencies and modes in ultrasonic transducers above the very-high-frequency (VHF) range is required for ultrasonic non-destructive evaluation and acoustic mass sensors. To obtain the desired longitudinal and shear wave conversion loss characteristics in the transducer, we propose the use of a c-axis zig-zag structure consisting of multilayered c-axis 23° tilted ZnO piezoelectric films. In this structure, every layer has the same thickness, and the c-axis tilt directions in odd and even layers are symmetric with respect to the film surface normal. c-axis zig-zag crystal growth was achieved by using a SiO(2) low-temperature buffer layer. The frequency characteristics of the multilayered transducer were predicted using a transmission line model based on Mason's equivalent circuit. We experimentally demonstrated two types of transducers: those exciting longitudinal and shear waves simultaneously at the same frequency, and those exciting shear waves with suppressed longitudinal waves.  相似文献   

11.
徐盛瀛  范军  王斌 《声学技术》2020,39(1):34-39
高分子聚合物(Polymethyl Methacrylate,PMMA)材料的瑞利(Rayleigh)波相速度低于水中声速,是一类亚音速波,其声散射特性及形成机理与金属材料存在一定差异。根据弹性球散射声场简正级数解,对比分析了相同尺寸的PMMA球和钢球的目标强度,发现PMMA球在低频段具有较大的目标强度。采用亚音速波声学隧道效应和表面环绕波传播共振特性,对PMMA球中亚音速Rayleigh波形成的低频目标强度增强进行了物理机理解释和分析。最后,开展了PMMA球和钢球声散射水池试验,验证了PMMA球具备较大的低频目标强度以及分析结果的准确性。  相似文献   

12.
The aim of this study is to quantitatively assess debonding in sandwich CF/EP composite structures with a honeycomb core using acoustic waves activated and captured by surface-mounted PZT elements. For experimental investigation, debonding was introduced at different locations in sandwich CF/EP composite beams. The fundamental anti-symmetric A0 Lamb mode was excited at a low frequency. The transmitted and reflected wave signals in both surface panels were captured by PZT elements after interacting with the debonding damage and specimen boundaries. Aided by finite element analysis (FEA), the differences in wave propagation characteristics in sandwich composite beams and composite laminate (e.g. skin panel only) were investigated. The debonding location was assessed using the time-of-flight (ToF) of damage-reflected waves, and the severity of debonding was evaluated using both the magnitude of the reflected wave signal and the delay in the ToF of Lamb wave signals. Good correlation between the experimental and FEA simulation results was observed. The results demonstrate the effectiveness of Lamb waves activated and captured by surface-mounted PZT elements on either surface of sandwich composite structures in assessing debonding.  相似文献   

13.
本提出一种利用脉冲激光产生可重复的宽带标准声源,对超声换能器的速度灵敏度进行标定的新方法-激光超声法。简述了激光脉冲产生声脉冲的原理,给出了换能器速度灵敏度的表示方法及标一原理。建立了整套标定装置,并给出了换能器的标定结果。结果表明,该方法可较好地标换能器的速度灵敏度。  相似文献   

14.
We demonstrate a monolithic bulk shear-wave acousto-optic tunable filter combining a piezoelectric transducer array and the acoustic interaction medium in a single crystal. An X-propagating acoustic longitudinal wave is excited in the "crossed-field" scheme by an RF-E/sub y/-field in a chirped acoustic superlattice formed by domain-inversion in lithium niobate (LiNbO/sub 3/). The acoustic longitudinal wave is efficiently (97.5%) converted at a mechanically free boundary into a Y-propagating acoustic slow-shear wave that couples collinearly propagating e- and o-polarized optical waves. A relative conversion efficiency of 80%/W was measured at 980 nm.  相似文献   

15.
Ultrasonic surface waves are suitable for the characterization of surface hardened materials. This is shown on laser hardened turbine blades. The martensitic microstructure within the surface layer of surface hardened steels has a lower surface wave propagation velocity than the annealed or normalized substrate material. Because the propagation velocity depends on the ratio of layer thickness to wavelengthd/, its measurement allows the determination of the hardening depth. If the surface wave frequency is high enough, the surface wave propagates mainly within the hardened layer. A correlation of the surface wave velocity to the surface hardness has been found. Because the variation of the surface velocity in hardened steels is small, a high measurement accuracy is necessary to obtain the interesting hardening parameters with sufficient certainty. Therefore, a measuring arrangement has been developed where laser pulses, guided by optical fibers to the surface hardened structure, generate simultaneously surface wave pulses at two different positions. The two ultrasonic pulses are received by a piezoelectric transducer. The surface wave velocity is obtained from the time delay between these pulses which is determined by the cross-correlation method. To evaluate simultaneously surface waves with different penetration depths from the same signal acquisition, digital filtering has been used in connection with the cross-correlation.  相似文献   

16.
Acoustoelastic effect in stressed heterostructures   总被引:1,自引:0,他引:1  
Mechanical stresses influence the phase velocity of acoustic waves, known as the AE (acoustoelastic) effect. In order to calculate the AE effect of biaxially stressed layered systems, we extended the transfer matrix method for acoustic wave propagation by considering the change of the density, the influence of residual stress, and the modification of the elastic stiffness tensor by residual strain and by third-order constants. The generalized method is applied to the calculation of the angular dispersion of the AE effect for transverse bulk modes and surface acoustic waves on Ge(001). Our calculations reveal that the AE effect significantly depends on the propagation direction and can even change sign. The maximal velocity change occurs for transversally polarized waves propagating parallel to the [110] direction. For the layered Ge/Si(001) system, the AE effect is investigated for Love modes propagating in the [100] and [110] directions. The AE effect increases rapidly with increasing layer thickness and almost reaches its maximal value when the wave still penetrates into the unstressed substrate  相似文献   

17.
This study explores the feasibility of using a non-contact guided wave imaging system to detect hidden delamination in multi-layer composites. The study is conducted in two phases. In the first phase, Lamb waves are excited by a lead (Pb) Zirconate Titanate transducer (PZT) mounted on the surface of a composite plate, and the out-of-plane velocity field is measured using a one-dimensional (1D) scanning laser Doppler vibrometer (LDV). From the scanned time signals, wavefield images are constructed and processed to study the interaction of Lamb waves with delamination. The paper presents additional signal and image processing techniques used to highlight the defect in the scanned area. The techniques are demonstrated using experimental data collected from a 1.8 mm thick multi-layer composite. In the second phase, a completely non-contact system is described to excite and measure guided waves. A modulated continuous wave (CW) laser source in conjunction with a photodiode is used to wirelessly excite an attached PZT and the resulting waves are again sensed using the vibrometer. The non-contact system is used to excite and measure elastic waves in a composite channel test article. The elastic wave propagation image sequences are created from the non-contact excitation system.  相似文献   

18.
The value of imaging techniques in ultrasonic nondestructive inspection (NDI) to find and characterize defects in steel components has already been demonstrated. The imaging techniques based on the integral representation of the wave equation, the Rayleigh integrals for wave field extrapolation, are becoming feasible and attractive due to advances in array technology and due to faster computers. Known implementations are the total focusing method (TFM), the synthetic aperture focusing method (SAFT), and the inverse wave field extrapolation method (IWEX). In principle, these techniques compensate propagation effects from sources to a scatterer such as a defect and propagation effects from the scatterer to receivers. Currently, this approach is applied to wave fronts of single modes (pure longitudinal or pure transversal). In practice, multiple wave fronts from the scatterer will be received as a result of mode conversion. These arrivals will not have the same arrival time because of the difference in sound velocity between longitudinal and transversal waves. Images of mode converted waves are obtained by choosing the appropriate sound velocity that corresponds with the mode-converted scattered wave in the imaging process. Therefore, the nonmode converted waves will image as leakage artifacts in the mode-converted images, and vice versa. This may lead to false interpretations. In this paper, such artifacts will be identified and explained with the help of an analytical example. Measurements from steel test pieces with a 4 MHz linear array transducer with 64 elements will be used to demonstrate the artifacts. Furthermore, a procedure to predict the artifacts and the subsequent suppression from the input measurements will be presented and demonstrated.  相似文献   

19.
本文研究了高密度PZT95/5陶瓷的声速及基本力学参数。与低密度陶瓷的研究结果对比,显示陶瓷的制备方法对陶瓷的声速影响较大:随密度增加,陶瓷的声速线性增加。极化方向对陶瓷的声速也有影响,声波方向平行于极化方向的陶瓷纵波声速最大,横波声速最小。  相似文献   

20.
An ultrasonic inspection method is used to obtain the circumference of a subsurface hole and the depth of the hole below the surface. A pitch-catch Rayleigh wave transducer set-up was used to launch a Rayleigh surface wave at the flaw and to capture and record the scattered waves. The frequency spectrum of the scattered waves can be used to obtain the depth of the hole. The ligament of material between the hole and the surface is sent into resonance, and this feature can be extracted from the scattered waves' frequency spectrum. The frequency is a function of the ligament length; thus the hole depth can be obtained. The circumference of the hole is found from a time of flight measurement. A Rayleigh wave is formed that travels around the hole's surface. The length of time required for the wave to travel around the hole is a measure of the circumference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号