首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
通过不同脱磷剂对铝碳化硅炭砖、铝炭砖、镁炭砖的侵蚀试验,对其侵蚀前后的矿相变化进行了分析,探讨了耐火材料的侵蚀原因。  相似文献   

2.
赵俊学  傅杰 《炼钢》2003,19(2):59-61
对常用弱氧化脱磷渣对耐火材料的侵蚀进行了研究,得出了脱磷渣对耐火材料主要组元不同溶解度的熔点曲线,并以此分析了脱磷渣对耐火材料侵蚀的影响。  相似文献   

3.
在16kW立式二硅化钼棒炉内对钢水化学加热法进行了热模拟,共研究了以硅钙钡作为发热剂时,钢水顶渣碱度对钢水质量和钢包耐火材料侵蚀的影响,结果表明,钢中元素含量基本不变时,夹杂物没有明显增加,提高顶渣碱度可以有效防止回磷、回硫,并具有脱磷和脱硫的效果,且顶渣对铜包耐火材料的侵蚀并不严重。  相似文献   

4.
使用实验室小型电阻炉对Si-Ca-Ba钢液发热剂的研究结果得出:向渣中加入适量CaO和CaF2可使[P][S]不增加;适量加入CaO可减少对镁质耐火材料的侵蚀。  相似文献   

5.
乐可襄  王世俊 《特殊钢》1998,19(5):10-12
使用实验室小型电阻炉对Si-Ca-Ba钢液发热剂的研究结果得出:向渣中加入适量CaO和CaF2可使「P」「S」不增加;适量加入CaO可减少对镁质耐火材料的侵蚀。  相似文献   

6.
镁质中间包涂抹料的研制   总被引:2,自引:0,他引:2  
隋军 《河北冶金》2003,(2):33-35
以中档烧结镁砂和防水化镁钙砂为主要原料,加入适量的结合剂、添加剂和纤维等,研制出的镁质中间包涂抹料,在连铸中间包上使用,具有抗冲刷、耐侵蚀,使用寿命长,施工性能好,烘烤和使用过程中不裂纹,不剥落,易于解体等特点,对提高铸坯质量,降低耐火材料消耗具有重要意义。  相似文献   

7.
一、前言能使铁水脱磷的熔剂很多,但从经济和效果来考虑,只有苏打和石灰基熔剂可在工业上应用.用苏打作脱磷剂时脱磷效率高,脱硫效率也好,可同时脱磷脱硫。但苏打渣对耐火材料浸蚀严重,苏打对环境有污染,而且苏打成本较高,在我国供应也紧缺。用石灰基熔剂作脱磷剂时脱磷效果好,也有一定的脱硫效果,可同时脱磷脱硫。而石灰基熔  相似文献   

8.
铁水预处理用耐炎材料的研究与进展   总被引:1,自引:0,他引:1  
综述了近期铁水预处理用耐火材料的研究与发展状况,着重ASC砖的组成,添加剂,结合剂的影响,讨论了预处理剂的影响、侵蚀过程及预处理用耐火材料的研究方向。  相似文献   

9.
通过浸泡实验研究了3种镁质(致密镁质、微孔MgO质、镁碳质)耐火材料与超低碳钢液(1 560℃)的相互作用,考察了不同浸泡时间(0~35 min)钢中O、N、C和Al、Si、Mn含量及钢中夹杂物的成分、数量、分布等特征的变化,并对耐火材料与钢的界面层进行了观测和分析。结果表明,随着浸泡时间的延长,3组钢中氧含量均先升高再降低,均对钢液有一定的污染,钢中夹杂物的数量增加,夹杂物种类由Al_2O_3-MnO夹杂逐渐转变为Al-Mg-Si-Mn-O复合夹杂。与致密镁质耐火材料相比,微孔MgO质和镁碳质耐火材料与钢的界面处分别能形成连续的镁铝尖晶石层和致密的MgO层,有助于降低耐火材料的侵蚀以及对钢液的污染。此外,与不含碳的镁质耐火材料相比,镁碳质耐火材料对钢液增碳严重。因此,微孔MgO质耐火材料不仅对钢液的二次污染小、不会向钢液增碳,而且还可以吸附钢中氧化铝夹杂,更有利于超低碳洁净钢的生产。  相似文献   

10.
钢包壁用铝——镁质浇铸耐火材料   总被引:1,自引:0,他引:1  
钢包壁用铝—镁质浇铸耐火材料[日]小林正则等1前言近年来,除渣线外,钢包壁(以下简称一般壁)大都采用铝—尖晶石质浇铸耐火材料。由于该浇铸耐火材料使用的是尖晶石熟料,所以其耐蚀性要比单用铝质的高。但是,从本所实际使用结果看,由于渣侵蚀层的剥离(以下简称...  相似文献   

11.
摘要:为了进一步提高长水口渣线部位用镁碳质耐火材料的服役寿命,研究了Si粉添加量(质量分数1%~5%)对镁碳质耐火材料显气孔率、体积密度、常温强度和高温抗折强度等关键性能的影响,以及与传统铝碳质耐火材料的抗渣性能对比。结果表明,随着Si粉添加量的增加,镁碳质耐火材料的显气孔率略有降低,常温强度影响不大,高温强度明显增强。其中,当Si粉添加量为5%(质量分数)时,镁碳质耐火材料高温抗折强度提高了30.2%。此外,研究发现,铝碳质耐火材料的侵蚀速率随中间包渣碱度的增大而增大,而镁碳质耐火材料在面对高碱度渣时表现出更好的抗侵蚀能力。最后,在钢厂实际环境的产品测试结果也印证了Si粉对镁碳质耐火材料使用性能的有效提升,具体为用常规铝碳质渣线浇铸SPHD、SPHE和IF钢种时的使用寿命仅为1~3炉,而用镁碳质长水口渣线浇铸的使用寿命提升到3~6炉。  相似文献   

12.
根据热力学分析和热态实验研究了钢水温度及其碳质量分数对镁铝尖晶石质耐火材料侵蚀的影响,并探讨了耐火材料的侵蚀机理。研究表明,提高温度将加剧钢水对耐火材料的侵蚀,随钢水中碳质量分数的增加,耐火材料的侵蚀指数先增加后减小。侵蚀机理包括:一是钢水中碳与耐火材料组分氧化镁反应化学侵蚀耐火材料;二是钢水向耐火材料内部的渗入以及低熔点物相在耐火材料颗粒界面的析出,降低了耐火材料颗粒间的结合力,加剧了钢水冲刷对耐火材料的损毁程度。  相似文献   

13.
根据热力学分析和热态实验研究了钢水温度及其碳质量分数对镁铝尖晶石质耐火材料侵蚀的影响,并探讨了耐火材料的侵蚀机理。研究表明,提高温度将加剧钢水对耐火材料的侵蚀,随钢水中碳质量分数的增加,耐火材料的侵蚀指数先增加后减小。侵蚀机理包括:一是钢水中碳与耐火材料组分氧化镁反应化学侵蚀耐火材料;二是钢水向耐火材料内部的渗入以及低熔点物相在耐火材料颗粒界面的析出,降低了耐火材料颗粒间的结合力,加剧了钢水冲刷对耐火材料的损毁程度。  相似文献   

14.
铝镁质钢包浇注料性能的研究   总被引:1,自引:0,他引:1  
以特级矾土熟料、中档镁砂、尖晶石细粉等为主要原料,研究了不同细粉加入量对铝镁质浇注料性能的影响,找出了SiO2微粉、尖晶石细粉和MgO细粉的最佳加入量。  相似文献   

15.
Due to the corrosion of CaO-Al2O3 based slags on refractory materials is related to the safe smelting of low-density and high-strength steel with high aluminum, the reaction experiment of calcium hexaaluminate castables with high-alumina and low-silicon CaO-Al2O3 based slag was carried out by introducing calcium hexaaluminate into corundum castables, and it was compared with that of alumina magnesia castable. The experimental results agreed with that of thermodynamic simulation and show that corundum calcium hexaaluminate castable has excellent slag resistance. Because the corundum calcium hexaaluminate castable reacted with the CaO Al2O3 based slag and produced high melting point phase CA2, which consumed a large amount of CaO in the slag and increased the viscosity of the slag, and CA2 filled the pores and blocked the penetration of slag. The wear mechanism of the calcium hexaaluminate castable is slag infiltration due to the higher porosity. Therefore, the combination of corundum aggregates and calcium hexaaluminate matrix is expected to be a candidate refractory material for ladle lining of low density and high strength steel smelting.  相似文献   

16.
摘要:由于高铝低硅CaO-Al2O3系熔渣对耐火材料的侵蚀损毁影响高铝含量低密度高强钢的安全冶炼生产,为此通过在刚玉质浇注料中引入六铝酸钙,开展六铝酸钙质浇注料与高铝低硅CaO-Al2O3系熔渣反应实验,并与铝镁浇注料进行对比研究了其作用行为。实验结果表明:刚玉 六铝酸钙浇注料具有优异抗渣性能。这主要是由于熔渣中大量的CaO被消耗,间接提高了熔渣黏度,并与刚玉 六铝酸钙浇注料反应生成的高熔点相CA2填充了气孔,阻挡了熔渣的渗透,实验结果与热力学模拟计算结果相吻合。六铝酸钙浇注料自身气孔率高,熔渣主要以渗透形式对六铝酸钙耐火材料造成破坏。因此,将刚玉骨料与六铝酸钙基质组合是有望成为低密度高强钢冶炼用钢包内衬候选耐火材料。  相似文献   

17.
摘要:钢中添加适量铝元素可以提高其韧性与耐腐蚀性,但在冶炼过程中会影响炉渣中Al2O3含量而改变其与现行铝镁质浇注料的界面反应,制约钢种冶炼及品质提升。因此,采用静态坩埚法开展铝镁质浇注料的抗CaO-Al2O3-SiO2渣蚀实验,并结合热力学模拟计算探究Al2O3含量(w(CaO)∶w(Al2O3),C/A)变化对耐火材料渣蚀的影响规律,得到以下结论:随着熔渣中Al2O3含量的增加,铝镁质浇注料与熔渣反应界面越易形成更厚的高熔点隔离层,将耐火材料组分向熔渣中的直接溶解转变为间接溶解,有利于提升铝镁质浇注料的抗侵蚀性;当渣中的Al2O3质量分数在32%左右时,熔渣的侵蚀性总体较弱,但当渣中的Al2O3质量分数不小于36%时,熔渣对铝镁质浇注料产生了严重的渗透性,也易造成材料变质剥落。这为面向含铝钢冶炼用耐火材料的优化设计提供参考。  相似文献   

18.
The toughness and erosion resistance of steel can be improved by adding an appropriate amount of aluminum. However it will increase the content of Al2O3 in slag and react with the existing alumina magnesia castable, and affect smelting and quality of steel. Therefore, static crucible method was applied, corrosion experiments of the CaO-Al2O3-SiO2 slags on the alumina magnesia castable were carried out, and the influence of Al2O3 content (w(CaO)∶w(Al2O3), C/A ratio) on slag corrosion resistance was investigated by combining thermodynamic simulation. The following conclusions were obtained: with the increase of Al2O3 content in the slags, the thicker isolation layer with high melting point is easier to form at the reaction interface between alumina magnesia castable and the slags. The direct dissolution of the refractory components into the slags can be changed to indirect dissolution, which is conducive to improving the corrosion resistance of alumina magnesia castable. Nevertheless, when the content of Al2O3 in the slag is about 32 wt.%, the slag corrosion is generally weak, when the content of Al2O3 in the slag is more than 36 wt.%, the slag has serious permeability to the alumina magnesia castable, which is easy to cause the deterioration and spalling of the material. It provides guidance on the optimization and design of the refractories for Al containing steel smelting.  相似文献   

19.
电熔氧化镁对镁铬耐火材料致密化的影响   总被引:1,自引:1,他引:0  
考察了电熔氧化镁加入量对镁铬耐火材料致密化的影响 .讨论了气孔率、体积密度和常温耐压强度与电熔氧化镁加入量之间的关系 .研究结果表明 ,适量的电熔氧化镁能够促进镁铬耐火材料的烧结性能和致密化  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号