首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
空腔回水是制约掺气效果的一个重要因素,影响掺气空腔回水的因素众多且复杂。通过泄槽反弧段模型试验,研究了当流量、挑坎高度、挑坎坡度等因素发生变化时,反弧半径的变化对空腔回水深度的影响。试验结果表明,当其他条件不变时,随着反弧半径的增大,空腔回水深度逐渐减小;反弧半径越小,对空腔回水深度的影响越明显;对于同一挑坎高度或坡度,空腔回水深度随来流量的增加而增加;随着挑坎高度、挑坎坡度的增大,空腔回水深度也随之增大,但当挑坎坡度达到一定时,空腔回水深度将不会增大。研究成果可为优化掺气坎下游设施的设计提供参考。  相似文献   

2.
掺气坎空腔长度是控制掺气减蚀效果的一个重要参数.影响掺气坎空腔长度的因素众多,其中一个是空腔内负压,而空腔内负压又与通气孔的面积有关.通过水槽试验,研究了不同流量、挑坎高度、挑坎坡度、水槽底坡等因素发生变化时,通气孔面积对空腔长度的影响.试验结果表明:通气孔大小对空腔长度的影响明显,在其他条件不变时,通气孔的面积越大,形成的空腔长度就越长,但当通气孔面积大于一定数值后,空腔长度将不再增加.因此在工程中,必须保证合适的通气孔面积,以形成良好的掺气空腔,有效地完成掺气减蚀.  相似文献   

3.
空腔特性是影响掺气效果的重要因素之一,而空腔长度和空腔积水是反映掺气空腔特性的两个重要指标。通过二维数学模型建立和数值模拟计算,对反弧半径、掺气坎体型与反弧段水流特性及掺气空腔特性的影响关系进行研究。根据数值模拟结果可以看出,反弧半径的增大会引起空腔长度的增长而减短空腔积水长度;挑坎坡度越陡,空腔长度和空腔积水长度都会变得越长;空腔长度和空腔积水长度都与挑坎高度成正比关系。本结果可以为优化掺气设施提供科学依据。  相似文献   

4.
通过变换坎高及挑坎坡度,制作不同体型的挑坎模型,将其置于可变坡有机玻璃水槽中,研究在不同流量下坎后掺气空腔长度及回水深度的规律。试验结果表明:在其他条件不变的情况下,来流量与空腔长度成正比,挑坎高度对空腔长度的影响比挑坎坡度要大得多;流量越大,空腔回水深度越低,而空腔回水深度却随着挑坎高度的增加而增加,挑坎高度的增加与回水深度的减轻并不成正比;在试验条件下,射流水舌冲击角5.5°时已出现空腔回水,空腔回水的出现与射流水舌冲击角密切相关,但归根结底还是与来流条件、水槽底坡、掺气坎体型的确定有关。  相似文献   

5.
掺气坎(槽)射流空腔长度的计算   总被引:11,自引:0,他引:11  
从分析掺气坎(槽)射流微分水体受力的力学关系出发,考虑了空腔内负压及运动液体所受离心惯性力的影响,建立起射流水舌下缘液体质点运动轨迹的微分方程.提出一种通过物理力学概念求解射流空腔长度的计算方法,并分析了空腔内负压、挑角等水力参数对射流空腔长度的影响.计算结果与试验值吻合良好。  相似文献   

6.
采用引入VOF方法的k~ε双方程紊流数值模拟和量纲分析的方法,对高水头泄洪建筑物反弧段后掺气坎底部空腔长度计算进行了研究,考虑反弧段附加离心力对空腔长度的影响,推导出高水头泄水建筑物反弧段后底空腔长度计算公式。该公式能够充分反映低弗氏数情况下,反弧段末端的掺气坎几何形态、来流条件及掺气坎后空腔长度的变化关系。  相似文献   

7.
通过作者建立的掺气坎射流曲线方程和掺气空腔积水方程,分析计算了泄槽底坡对跌坎型、挑坎型和挑跌坎型3种掺气坎掺气空腔积水的影响.计算结果表明,泄槽底坡对3种体型掺气坎掺气空腔积水的影响规律是一致的.随泄槽底坡增大,空腔积水减弱,最终消失;掺气坎后挑射水流与底板的冲击角随泄槽底坡增大而减小;不同体型掺气坎的临界冲击角是不一样的.研究成果可为掺气坎的设计提供参考.  相似文献   

8.
9.
掺气空腔长度是衡量掺气减蚀效果的核心水力指标。针对关于侧掺气空腔长度计算方法的研究成果偏少的现状,通过模型试验和量纲分析,对陡槽上不同坎高和坡度侧掺气坎的空腔特性和射流扩散特性开展了研究,分析侧掺气坎体型参数及来流水力学参数对侧空腔长度的影响,推导出侧空腔长度计算公式,并采用多组实验数据进行了验证。结果表明该公式能较准确地估算侧掺气空腔长度。  相似文献   

10.
缓坡条件下掺气减蚀设施的体型研究   总被引:7,自引:0,他引:7  
结合小湾泄洪洞掺气减蚀设施优化研究,提出了“当量坎高”的概念与凹型掺气坎的布置构想,在相同“当量坎高”的前提下,通过1:60水工模型试验,对平面凹型、平面凸型、平面梯形、U型坎,以及直线型挑坎等掺气坎体型进行了对比试验研究,从掺气浓度、空腔特性及通气量等指标看,凹型掺气坎是一种较优的布置形式.从物理机制上看,平面凹型掺气坎因空腔内水气交界面积大,对提高空腔内的总通气量、改善掺气条件有利;另外,相对于其他异型掺气坎而言,凹形掺气坎在两侧边墙处空腔更为完整一些,这对提高边壁角隅区域水流的掺气能力,增进边墙的抗空蚀效果也有一定的助益.  相似文献   

11.
通过大量的试验,测量了消力池底板压强分布规律、池内流态和流速分布,着重分析了入池水流单位重量水体能量、入池角度和跌坎高度的变化对消力池底板冲击压力、临底流速、池内流态及消能率的影响。研究表明,连续跌坎型底流消能工的跌坎高度与入池角度之间存在一种最优组合,可既保证消力池中消能率高,又能满足临底流速和底板动水冲击压力小的要求。该研究成果可为工程设计提供一定的科学依据。  相似文献   

12.
Hydraulic jump characteristics were studied experimentally over six corrugated beds with varying wave steepness, which had corrugation and Froude numbers in the range of 0.286–0.625 and 3.8–8.6, respectively. The effects of wave height and length of corrugation on the basic jump characteristics, including free surface location, velocity, shear stress distribution and energy dissipation, were studied for a range of Froude numbers. The dimensionless hydraulic parameters were found to be a function of the Froude number. The results showed that the tailwater depth and the length of the jump on corrugated beds are smaller than those of the corresponding jump on a smooth bed. The analysis of velocity profiles at different sections in the jump showed that the velocity profiles were similar to those of a simple plane wall jet. The normalized boundary layer thickness δ/b was equal to 0.57 for jumps on a corrugated bed, compared to 0.16 for the simple wall jet. The analysis and comparison of the bed shear force and shear stress coefficient showed that shear stress on a corrugated bed is about 10 times that of a smooth bed. The results of this study are in good agreement with previous results and showed that corrugated beds can be used to dissipate the excess hydraulic jump energy in stilling basins.  相似文献   

13.
With the rapid development of high dam projects within China, the dragon-drop-tail spillway tunnel is introduced and widely used. In view of the high water head and the large flow velocity on the dragon-drop-tail section, aerator devices are usually placed for the cavitation damage control. For the device placed in its initial position, it is a serious concern to design a suitable flow regime of the cavity and to control the cavity filling water due to the large flow depth and the low Froude number through this aerator. In this study, the relationships between the geometries of the aerator device and the jet impact angle of the lower trajectory of the flow are theoretically analyzed with/without a local slope. Nine test cases with different geometries are designed, the effectiveness of the filling water control is experimentally investigated under different operation conditions, and two criteria of the local slope design are proposed. It is concluded that the cavity flow regime and the filling water can be improved if a small impact angle and some suitable geometries of the local slope are designed.  相似文献   

14.
岳书波  刁明军 《人民长江》2017,48(18):56-60
库岸滑坡涌浪不仅威胁航行船只的安全,还可能冲毁库区内的水工建筑物,有必要对其展开系统研究。而确定涌浪首浪高度是研究库岸滑坡涌浪的首要问题。通过对影响首浪相对高度因素的无量纲化处理,获知滑坡体入水的相对Froude数、滑坡体的相对高度和滑坡入水角度是影响首浪相对高度的主要因素;同时运用微波的波能理论和机械能守恒理论推导出一项新的首浪高度理论计算式,再利用滑坡涌浪模型试验数据对计算式进行拟合,并考虑计算式的实际运用和推广,最终得到一种计算库岸滑坡涌浪首浪高度的新方法。可为库区滑坡涌浪灾害提供预测基础。  相似文献   

15.
小浪底库区异重流潜入点判别条件的讨论   总被引:1,自引:0,他引:1  
回顾范家骅模拟异重流潜入实验的机理、结论和意义;针对生产单位处处以范家骅实验所得的佛汝德数为指标来判别小浪底库区异重流潜入条件的问题,进行理论分析和实测数据验证,提出小浪底库区异重流不能适用该佛汝德数指标。  相似文献   

16.
底流消能中在遇坡度情况下通常采用折坡扩散型消力池,其消能效果较好,对地形适应性强,在同等水利条件下,需要的池深更小,更经济高效。折坡式消力池的优化及应用还存在难题,该体型在低弗氏数水流下的消能与具体工程的应用具有一定研究价值。本工程水流为低弗劳德数水流,通过模型试验,在不同工况下,对折坡扩散式消力池的水深、压强、消能率等水力特性做了研究,针对三种不同体型比较优化,最终得出加深消力池与在护坦加设消能墩的方式,其对下游水深的适应更好。  相似文献   

17.
采用模型试验手段,通过改变来流断面水流弗氏数Fr及窄缝收缩比β2个参数,重点研究了窄缝挑坎内急流冲击波交汇点位置及水流出坎后扩散规律。研究结果表明:β对冲击波交汇点位置影响较大,而来流Fr影响较小;β越大,冲击波交汇点越靠近挑坎出口;冲击波交汇后,挑坎内表面水体开始起挑,随着β的增大,水流出射角相应减小,β=0.2~0.25时,冲击波交汇点距挑坎出口距离占挑坎总长30%~40%,此时水舌扩散充分性及稳定性都较优。研究成果进一步丰富了对窄缝挑坎水力特性的认识,并为设计提供一定的理论依据。  相似文献   

18.
彭小云 《江西水利科技》2013,(4):267-269,287
本文根据长龙水库溢洪道水工模型试验基础上提出了加固设计方案,既解决了溢洪道存在的问题,又节约了资金,取得了良好的经济效益.  相似文献   

19.
为探究植被的排列方式及坡度大小对坡面流弗劳德数Fr的影响,以期揭示坡面流弗劳德数Fr的内在规律。利用人工模拟试验,系统研究了6个坡度、3种植物排列方向与水流方向呈不同走向角的条件下Fr与单位底面积的空间摩阻表面积K值的特征关系。表明在非淹没状态下,Fr与K值的关系为随K值的增大Fr呈现先减小后趋于平稳的趋势;Fr的取值随坡度的增大而增大;在一定的坡度范围内,同一坡度下,当Fr1时,同一K值下,走向角越大对应的Fr值越小,当Fr1时则相反;同一走向角下,在同一K值下,坡度越大对应的Fr就越大。得出在坡度一定的条件下,坡面植被的排列方式不同,弗劳德数Fr的取值也不相同;坡度是影响Fr取值范围的重要因素之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号