首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect exerted by sulphur and carbon inclusions from the brightener on the alteration of the structure of electrodeposited bright nickel-iron coatings is investigated. Different possible states of the included sulphur (in an organic chain or as a sulphide) are considered. Along with the structural changes of the deposit owing to the inclusions, the alteration of the corrosion rate in the active state in 1N H2SO4 is studied.  相似文献   

2.
Abstract

A study has been made of the corrosion-resisting properties of tin-cadmium and tin-zinc coatings on steel in which both laminar and alloy coatings have been tested using atmospheric exposure and accelerated tests. It is concluded that electrodeposited coatings of zinc on a tin substrate or zinc alone possess a greater resistance to atmospheric corrosion in an industrial atmosphere than equivalent coatings of cadmium on tin or tin on cadmium, or tin-zinc alloy coatings. The corrosion resistance of tin-zinc laminar coatings depends primarily on the amount of zinc present. Alloy coatings of tin-zinc and tin-cadmium generally possess similar corrosion resistance to those of the tin and cadmium laminar coatings. Under simulated marine conditions (A.R.E. Salt Droplet test) the corrosion resistance of coatings containing cadmium is superior to that of corresponding coatings containing zinc.  相似文献   

3.
Co‐TiO2 nanocomposite coatings with various contents of TiO2 nanoparticles were prepared by electrodeposition in Co sulfate plating bath containing TiO2 nanoparticles. The influence of the TiO2 nanoparticles concentration in the bath, of the current density and of sodium dodecyle sulfate (SDS) as anionic surfactant on the morphology, composition, texture, roughness, and microhardness of the coatings was investigated. The morphology and composition of coatings were studied by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The phase structure of coatings was analyzed by X‐ray diffraction (XRD). The results showed that the maximum codeposition of TiO2 nanoparticles in Co matrix was around 4.5 vol% obtained in 60 g/L TiO2 in the bath, 30 mA/cm2 and 0.15 g/L SDS. The microhardness of coatings was increased up to 504 Hv by increasing TiO2 concentration in the bath to 60 g/L TiO2. The electrochemistry tests including potentiodynamic polarization and impedance spectroscopy revealed that by addition of TiO2 into Co matrix, the corrosion current density, polarization resistance, and charge transfer resistance of Co‐TiO2 coating were increased compared with Co coating.  相似文献   

4.
电沉积金属Ni涂层的高温腐蚀性能   总被引:2,自引:0,他引:2  
通过调控电沉积过程中的阴极电流密度制备具有不同晶粒尺寸和择优取向的Ni镀层.采用透射电镜(TEM)、扫描电镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)对高温腐蚀前、后不同Ni镀层进行检测分析,对比研究不同Ni镀层经过960 ℃的78.07%Na3AlF6-9.5%AlF3-5%CaF2(质量分数)熔盐气氛腐蚀后的结构、成分和形貌.结果表明:在高电流密度下易获得晶粒细小,平均晶粒尺寸为120 nm,具有较强(100(择优取向的Ni镀层;而在低电流密度下所得的Ni镀层晶粒较粗大,平均晶粒尺寸为925 nm,具有较弱的(111(择优取向.在腐蚀气氛下,低电流密度下所得的Ni镀层在高温腐蚀后有利于生成晶粒粗大、且具有完整"八面体"结构的NiAl2O4尖晶石相;而高电流密度下所得Ni镀层表层腐蚀层的晶粒细小,且主要为NiO相.  相似文献   

5.
In this research, Ni–W/SiC composite coatings were electrodeposited from a plating bath containing suspension of SiC particles. The influences of SiC particle concentration in the plating bath on the composition of composite coatings were investigated. The surface morphology and composition of the composite coatings were characterised by scanning electron microscopy, energy dispersive X-ray measurements and X-ray diffraction analysis. The corrosion characteristics of Ni–W/SiC composite coatings were investigated by mass loss and electrochemical measurements, including open circuit potential, electrochemical impedance spectroscopy and potentiodynamic polarisation in a 3·5 wt-%NaCl solution. The results showed that the addition of SiC particle to the deposition bath of Ni–W significantly increased the corrosion resistance. The significant improvement in corrosion resistance observed for Ni–W/SiC composite coatings (17100 Ω cm2) compared to Ni–W (5619 Ω cm2) could have resulted from the microstructural differences.  相似文献   

6.
Cadmium (Cd) catalyzed Zn-Ni alloy plating has been accomplished galvanostatically on mild steel (MS) using gelatin and glycerol as additives. The effect of addition of Cd into Zn-Ni bath has been examined in terms of nickel (Ni) content and corrosion resistance of Zn-Ni-Cd ternary alloy coatings. The process and product of electrolysis under different concentrations of additives and Cd have been investigated by cyclic voltammetry (CV). The effects of current density (c.d.) on Ni content of the alloy have been studied by spectrophotometric method, supported by EDX analysis. The deposition has been carried out under different concentrations of Cd ranging from 0.004 to 0.1 M. The corrosion rates (CR) of Zn-Ni alloy coatings have been found to decrease drastically with addition of Cd. It has been also revealed that the CR of binary Zn-Ni alloy coatings decreased with the increase of Cd concentration only up to a certain optimal concentration, i.e., up to 0.02 M, and then remained unchanged. An effort to change the anomalous type of codeposition into normal one by changing the molar ratios of the metal ions, i.e. [Cd2+]/[Ni2+] as 0.01, 0.05 and 0.25 has remained futile. CV study demonstrated an important role of Cd in mutual depositions of Zn2+ and Ni2+ ions by its preferential adsorption, thus leading to the increased Ni content of the alloy. The bath composition and operating parameters have been optimized for deposition of bright and uniform Zn-Ni-Cd alloy coatings. Changes in the surface morphology and phase structure of Zn-Ni alloy coatings due to addition of Cd has been confirmed by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) study respectively. Experimental investigations so as to identify the role of Cd in codeposition Zn-Ni alloy coatings have been carried out and the results are discussed.  相似文献   

7.
Al-Mn合金镀层的微观结构及耐蚀性   总被引:1,自引:0,他引:1  
在AlCl3-NaCl-KCl低温共融盐中,添加无水MnCl2,接通直流电在铁片上获得Al—Mn合金镀层。用扫描电镜、能量色散谱、X射线衍射和极化曲线对分别对该合金镀层的形貌、组成、相结构及耐腐蚀性能进行测试。结果表明:纯铝镀层表面呈针状,锰质量分数9.20%的镀层表面呈花状,锰质量分数25.43%的镀层表面有无规则瘤节状凸起物且晶界模糊,而锰质量分数达到34.42%时,晶粒细化,晶界清晰;合金镀层中锰质量分数与熔盐中无水MnCl2的质量分数呈线性关系;锰质量分数为20.84%~29.74%的镀层为单一的非晶态结构,锰质量分数高于29.74%的镀层为Al8Mn5晶体与非晶态的双相结构;合金镀层的点蚀电压比纯铝镀层高180~360mV,单相非晶态合金镀层的耐蚀性优于双相镀层。  相似文献   

8.
Cr–SiC nanocomposite coatings with various contents of SiC nanoparticles were prepared by electrodeposition in optimized Cr plating bath containing different concentrations of SiC nanoparticles. Direct current electrocodeposition technique was used to deposit chromium layers with and without SiC nanoparticles on mild carbon steel. The effects of current density, stirring rate and concentration of nanoparticles in the plating bath were investigated. Scanning electron microscopy was used to study surface morphology. Energy dispersive analysis technique was used to verify the presence of SiC nanoparticles in the coated layers. The corrosion behaviors of coatings were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy methods in 0.05 mol/L HCl, 1 mol/L NaOH and 3.5% NaCl (mass fraction), respectively. Microhardness measurements and pin-on-disc tribometer technique were used to investigate the wear behavior of the coatings.  相似文献   

9.
采用电化学沉积方法在DH36船板钢表面制备了锌镍合金镀层。采用扫描电镜(SEM),能谱仪(EDS)和X射线衍射仪(XRD)等研究了电化学沉积电位对锌镍合金镀层形貌、化学成分和晶体结构的影响。结果表明:随着沉积电位的升高,锌镍合金镀层由无法覆盖整个基底表面到均匀致密覆盖,再到较大微纳米颗粒层覆盖,证明沉积速率越来越大。由EDS和XRD分析可知,在较低电位下沉积,锌镍电沉积过程属于正常共沉积,而在较高电位沉积时,锌镍电沉积过程属于异常共沉积。电化学极化曲线测试表明,在电沉积电位为-1.2 V时所获得的锌镍合金镀层的耐腐蚀性最好。  相似文献   

10.
SiC颗粒尺寸对镍基复合镀层耐磨性和耐蚀性的影响   总被引:1,自引:0,他引:1  
在正交实验基础上,对比研究微米SiC(平均粒径1.5 μm)和纳米SiC(平均粒径20 nm)增强复合镍基镀层的摩擦磨损行为和耐腐蚀性能.通过TEM、SEM、EDX和XRD等手段研究颗粒分散状态以及复合镀层的表面和截面形貌、成分及相结构.采用球-盘滑动摩擦磨损试验机研究复合镀层的耐磨性.电化学阻抗谱测量在3.5%的NaCl水溶液中进行.结果表明:微米级颗粒增强复合镀层可以获得更高的表面硬度,两种增强复合镀层具有相似的摩擦磨损行为.电化学阻抗谱分析表明:SiC颗粒的加入可以提高镀层的耐腐蚀性,且纳米颗粒复合镀层具有更好的耐蚀性.  相似文献   

11.
1 Introduction Magnesium alloys are relatively light structural materials, with excellent physical and mechanical properties,such as low densityand high specific strength, excellent castability and good machinability. These properties make them ideal cand…  相似文献   

12.
In order to improve the corrosion resistance of the Mg alloys, the superhydrophobic coatings on AZ31 Mg alloy were prepared by a two-step process of micro-arc oxidation treatment and superhydrophobic treatment in stearic acid ethanol solution. The effects of voltages, frequencies and treatment time on the contact angle of the superhydrophobic treated sample were investigated. The results showed that with increasing the voltage, frequency and treatment time, all of the contact angles of the superhydrophobic treated sample increased first, and then decreased, reaching the maximum values at 350 V, 1000 Hz and 5 min, respectively. The optimal superhydrophobic coating was mainly composed of MgO and Mg2SiO4 phases, with the pore diameter of ~900 nm, the thickness of ~6.86 μm and the contact angle of 156.96°. The corrosion current density of the superhydrophobic AZ31 sample decreased by three orders of magnitude, and the amount of hydrogen evolution decreased by 94.77% compared with that of the AZ31 substrate sample.  相似文献   

13.
The present study evaluates the effects of a 600 °C, 1 h heat treatment on the corrosion resistance of three High Velocity Oxygen Fuel (HVOF) flame-sprayed alloy coatings: a Co-28Mo-17Cr-3Si (similar to Tribaloy-800) coating, a Ni-20Cr-10W-9Mo-4Cu-1C-1B-1Fe (Diamalloy-4006) coating and a Ni-32Mo-16Cr-3Si-2Co (similar to Tribaloy-700) coating. Electrochemical polarization tests and free corrosion tests were performed in 0.1 M HCl aqueous solution. The corrodkote test (ASTM B380-97R02) was also performed, to evaluate the coatings qualitatively. The heat treatment improves the corrosion resistance of the Co-28Mo-17Cr-3Si coating and of the Ni-20Cr-10W-9Mo-4Cu-1C-1B-1Fe coating by enhancing their passivation ability. The precipitation of sub-micron sized secondary phases after the treatment may produce galvanic microcells at intralamellar scale, but the beneficial contribution provided by the healing of the very small but dangerous interlamellar defects (normally present in thermal spray coatings but not detectable using ordinary scanning electron microscopy) prevails. The effect on Ni-32Mo-16Cr-3Si-2Co coatings is more ambiguous: its sensitivity to crevice corrosion is worsened by the heat treatment.  相似文献   

14.
Ni–TiN composite coatings were successfully prepared by direct current (DC), pulse current (PC) and ultrasonic pulse current (UPC) deposition methods. The morphology, mechanical properties and the corrosion behavior of Ni–TiN composite coatings were investigated using atomic force microscope (AFM), scanning electronic microscope (SEM), X-ray diffraction (XRD) and gravimetric analysis. The results show that the Ni–TiN composite coatings synthesized by UPC deposition method possess a compact and exiguous surface morphology. The XRD results demonstrate that the average grain diameter of Ni and TiN in composite coating prepared by UPC deposition is 52.6 and 35.7 nm, respectively. In the corrosion tests, the coating prepared by UPC deposition exhibits the best corrosion resistance, whereas the coating fabricated by DC deposition suffers the most serious damage.  相似文献   

15.
Recovered substrates have been extensively used in the aerospace field. Cadmium electroplating has been widely applied to promote protective coatings in aeronautical components, resulting in excellent corrosion protection combined with a good performance in cyclic loading. Ecological considerations allied to the increasing demands for corrosion resistance have resulted in the search for possible alternatives. Zinc-nickel (Zn-Ni) alloys have received considerable interest recently, because these coatings show advantages such as a good resistance to white and red rust, high plating rates, and acceptance in the market. In this study, the effect of electroplated Zn-Ni coatings on AISI 4340 high-strength steel was analyzed for rotating bending fatigue strength, corrosion, and adhesion resistance. The compressive residual stress field was measured by x-ray diffraction prior to fatigue tests. Optical microscopy documented coating thickness, adhesion characteristics, and coverage extent for nearly all substrates. Fractured fatigue specimens were investigated using scanning electron microscopy (SEM). Three different Zn-Ni coating thicknesses were tested, and comparisons with the rotating bending fatigue data from electroplated Cd specimens were performed. Experimental results differentiated the effects of the various coatings on the AISI 4340 steel behavior when submitted to fatigue testing and the influence of coating thickness on the fatigue strength.  相似文献   

16.
Oxide coatings were prepared on magnesium alloys in electrolyte solution of Na2SiO3 at different current densities (3, 4 and 5 A/cm2) with micro-arc oxidation process. X-ray diffractometry (XRD) results show that the oxide coatings formed on magnesium alloys are mainly composed of MgO and MgAl2O4 phases; in addition, the content of MgO increases with increasing the current density. The morphology and surface roughness of the coatings were characterized by confocal laser scanning microscopy (CLSM). The results show that the surface roughness (Ra) decreases with increasing the current density. Moreover, the electrochemical corrosion results prove that the MgO coating produced in the electrolyte Na2SiO3 at current density of 5 A/cm2 shows the best corrosion resistance.  相似文献   

17.
TiAl合金表面激光重熔MCrAlY涂层热腐蚀性能   总被引:1,自引:0,他引:1       下载免费PDF全文
采用等离子喷涂技术在TiAl合金表面制备了MCrAlY涂层,并用激光重熔工艺对涂层进行处理,研究了TiAl合金、等离子喷涂MCrAlY涂层及激光重熔MCrAlY涂层850℃下75%Na2SO4+25%NaCl(质量分数)混合盐浸泡热腐蚀性能,分析了不同试样的热腐蚀破坏机理,并讨论了激光重熔处理对涂层热腐蚀性能的影响.结果表明,等离子喷涂MCrAlY涂层能显著提高TiAl合金的耐热腐蚀性能,经过激光重熔后可进一步提高其耐热腐蚀性能.MCrAlY涂层在高温熔盐中的热腐蚀发生的是表面氧化反应和内部硫化反应,主要生成Al2O3,Cr2O3,NiO,NiCr2O4,Ni3S2及CrS等腐蚀产物.  相似文献   

18.
以AZ91HP镁合金为研究对象,以纳米氧化硅为第二相粒子,通过纳米复合电沉积法制备AZ91HP镁合金Ni-SiO2纳米复合镀层。利用扫描电镜观察纳米复合镀层的显微形貌与微观结构,利用显微硬度计测定纳米复合镀层显微硬度,利用M200摩擦磨损试验机测试纳米复合镀层的耐磨性能。结果表明:在AZ91HP镁合金表面获得了结晶均匀、结构致密的Ni-SiO2纳米复合镀层;纳米复合镀层剖面形貌显示纳米复合镀层与镁合金基体结合良好;镀液中纳米颗粒含量为10g/L时,AZ91HP镁合金表面电沉积Ni-SiO2纳米复合镀层的显微硬度最高,最高达HV367;摩擦磨损试验表明纳米复合镀层与镀镍层、镁合金基体相比,耐磨性明显提高,这是由于纳米颗粒的细晶强化和弥散强化所致;纳米复合镀层的磨损机制主要是磨粒磨损,镁合金基体磨损机制为粘着磨损,镀镍层磨损机制为剥层磨损。  相似文献   

19.
20.
The possibility of increasing the corrosion resistance of automotive sheet steel by electrodepositing with Zn-Co alloy coatings was investigated. Process variables during electrodeposition such as current density, electrolyte flow rate, and pH were varied in order to examine their influence on the electroplating process. Cobalt contents varying from 0.2 to 7 wt% were easily obtained. The influence of these process parameters on the characteristics of the coating could be related to the hydroxide suppression mechanism for anomalous codeposition. The structure and the morphology of the coatings were determined using SEM and XRD analysis. Application properties important for coating systems used in the automotive industry, such as friction behavior, adhesion, and corrosion behavior, were investigated on coatings with varying cobalt content. The corrosion resistance of the Zn-Co alloy layers was found to be better than that of pure zinc coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号