首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The human immunodeficiency virus type-1 regulatory protein Rev is absolutely required for the production of viral structural proteins. Splice sites have been seen to function as cis-acting repressor sequendes (CRS) and inhibit expression of the Rev-dependent RNAs. In order to analyze the role of a splice donor in Rev dependence, the wild-type 5' splice donor of HIV-1 was mutated in the context of other gag sequences. Following transient transfection, RNA expression by RT-PCR was analyzed. The unspliced RNA produced by the mutant construct still required Rev for the cytoplasmic accumulation of the RNA. Despite deletion of the wild-type 5' splice donor and the tat splice acceptor was used. A cryptic splice donor was identified by PCR and subsequent cloning of the spliced RNA. The cryptic site is 5/9 to the consensus sequence and located immediately downstream of the initiation codon (ATG) for Gag. Analysis of the RNA product containing the cryptic splice donor revealed that the Rev was required for the cytoplasmic accumulation of unspliced RNA, while spliced RNA was Rev independent. Transfection of a wild-type construct also demonstrated usage of the cryptic splice donor. These results indicate that a cryptic splice donor can be activated when the wild-type splice donor is inactivated and that the cryptic splice donor may retain Rev regulation. The findings also suggest the potential for cryptic splice sites to serve as CRS in the determining the Rev dependence of viral RNAs.  相似文献   

2.
Bimolecular exon ligation by the human spliceosome   总被引:1,自引:0,他引:1  
Intron excision is an essential step in eukaryotic gene expression, but the molecular mechanisms by which the spliceosome accurately identifies splice sites in nuclear precursors to messenger RNAs (pre-mRNAs) are not well understood. A bimolecular assay for the second step of splicing has now revealed that exon ligation by the human spliceosome does not require covalent attachment of a 3' splice site to the branch site. Furthermore, accurate definition of the 3' splice site in this system is independent of either a covalently attached polypyrimidine tract or specific 3' exon sequences. Rather, in this system 3' splice site selection apparently occurs with a 5' --> 3' directionality.  相似文献   

3.
We have identified four purine-rich sequences that act as splicing enhancer elements to activate the weak 3' splice site of alpha-tropomyosin exon 2. These elements also activate the splicing of heterologous substrates containing weak 3' splice sites or mutated 5' splice sites. However, they are unique in that they can activate splicing whether they are placed in an upstream or downstream exon, and the two central elements can function regardless of their position relative to one another. The presence of excess RNAs containing these enhancers could effectively inhibit in vitro pre-mRNA splicing reactions in a substrate-dependent manner and, at lower concentrations of competitor RNA, the addition of SR proteins could relieve the inhibition. However, when extracts were depleted by incubation with biotinylated exon 2 RNAs followed by passage over streptavidin agarose, SR proteins were not sufficient to restore splicing. Instead, both SR proteins and fractions containing a 110-kD protein were necessary to rescue splicing. Using gel mobility shift assays, we show that formation of stable enhancer-specific complexes on alpha-tropomyosin exon 2 requires the presence of both SR proteins and the 110-kD protein. By analogy to the doublesex exon enhancer elements in Drosophila, our results suggest that assembly of mammalian exon enhancer complexes requires both SR and non-SR proteins to activate selection of weak splice sites.  相似文献   

4.
Inefficient splicing of human immunodeficiency virus type 1 (HIV-1) RNA is necessary to preserve unspliced and singly spliced viral RNAs for transport to the cytoplasm by the Rev-dependent pathway. Signals within the HIV-1 genome that control the rate of splicing include weak 3' splice sites, exon splicing enhancers (ESE), and exon splicing silencers (ESS). We have previously shown that an ESS present within tat exon 2 (ESS2) and a suboptimal 3' splice site together act to inhibit splicing at the 3' splice site flanking tat exon 2. This occurs at an early step in spliceosome assembly. Splicing at the 3' splice site flanking tat exon 3 is regulated by a bipartite element composed of an ESE and an ESS (ESS3). Here we show that ESS3 is composed of two smaller elements (AGAUCC and UUAG) that can inhibit splicing independently. We also show that ESS3 is more active in the context of a heterologous suboptimal splice site than of an optimal 3' splice site. ESS3 inhibits splicing by blocking the formation of a functional spliceosome at an early step, since A complexes are not detected in the presence of ESS3. Competitor RNAs containing either ESS2 or ESS3 relieve inhibition of splicing of substrates containing ESS3 or ESS2. This suggests that a common cellular factor(s) may be required for the inhibition of tat mRNA splicing mediated by ESS2 and ESS3.  相似文献   

5.
6.
7.
The essential splicing factor SF2/ASF and the heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) modulate alternative splicing in vitro of pre-mRNAs that contain 5' splice sites of comparable strengths competing for a common 3' splice site. Using natural and model pre-mRNAs, we have examined whether the ratio of SF2/ASF to hnRNP A1 also regulates other modes of alternative splicing in vitro. We found that an excess of SF2/ASF effectively prevents inappropriate exon skipping and also influences the selection of mutually exclusive tissue-specific exons in natural beta-tropomyosin pre-mRNA. In contrast, an excess of hnRNP A1 does not cause inappropriate exon skipping in natural constitutively or alternatively spliced pre-mRNAs. Although hnRNP A1 can promote alternative exon skipping, this effect is not universal and is dependent, e.g., on the size of the internal alternative exon and on the strength of the polypyrimidine tract in the preceding intron. With appropriate alternative exons, an excess of SF2/ASF promotes exon inclusion, whereas an excess of hnRNP A1 causes exon skipping. We propose that in some cases the ratio of SF2/ASF to hnRNP A1 may play a role in regulating alternative splicing by exon inclusion or skipping through the antagonistic effects of these proteins on alternative splice site selection.  相似文献   

8.
9.
Nuclear pre-messenger RNA splicing requires the action of five small nuclear (sn) RNAs, U1, U2, U4, U5 and U6, and more than 50 proteins. The mechanistic similarity of nuclear pre-mRNA splicing and group II self-splicing suggests that many of the central processes of nuclear pre-mRNA splicing are based on RNA-RNA interaction. To understand the mechanism of pre-mRNA splicing, the interactions, and their temporal relationships, that occur between the snRNAs and the pre-mRNA during splicing must be identified. Several snRNA-snRNA and snRNA-intron interactions have been demonstrated but the putative RNA-based interactions that recognize the AG dinucleotide at the 3' splice site during 3' cleavage and exon ligation are unknown. We report here the reciprocal suppression between 5' and 3' splice site mutations in the yeast actin intron, and propose that the 3' splice site is positioned for 3' cleavage and exon ligation, at least in part, through a non-Watson-Crick interaction between the guanosines at the 5' and 3' splice sites.  相似文献   

10.
In the gene of the neural cell adhesion molecule, the 5' splice site of the alternate exon 18 plays an important role in establishing regulated splicing profiles. To understand how the 5' splice site of exon 18 contributes to splicing regulation, we have investigated the interaction of the U2AF65 splicing factor to pre-mRNAs that contained portions of the constitutive exon 17 or the alternate exon 18 fused to exon 19 and separated by a shortened intron. Despite sharing an identical 3' splice site, only the pre-mRNA that contained a portion of exon 17 and its associated 5' splice site displayed efficient U2AF65 cross-linking. Strikingly, a G-->U mutation at position +6 of the intron, converting the 5' splice site of exon 18 into that of exon 17, stimulated U2AF65 crosslinking. The improved cross-linking efficiency of U2AF65 to a pre-mRNA carrying the 5' splice site of exon 17 required the integrity of the 5' end of U1 but not of U2 small nuclear RNA. Our results indicate that neural cell adhesion molecule 5' splice site sequences influence U2AF65 binding through a U1 small nuclear ribonucleoprotein/U2AF interaction that occurs at the commitment stage of spliceosome assembly, before stable binding of the U2 small nuclear ribonucleoprotein. Thus, the 5' splice sites of exons 17 and 18 differentially affect U2AF65 binding to the 3' splice site of exon 19. Factors that modulate U1 small nuclear ribonucleoprotein binding to these 5' splice sites may play a critical role in regulating exon 18 skipping.  相似文献   

11.
12.
A conserved 3' splice site YAG is essential for the second step of pre-mRNA splicing but no trans-acting factor recognizing this sequence has been found. A direct, non-Watson-Crick interaction between the intron terminal nucleotides was suggested to affect YAG selection. The mechanism of YAG recognition was proposed to involve 5' to 3' scanning originating from the branchpoint or the polypyrimidine tract. We have constructed a yeast intron harbouring two closely spaced 3' splice sites. Preferential selection of a wild-type site over mutant ones indicated that the two sites are competing. For two identical sequences, the proximal site is selected. As previously observed, an A at the first intron nucleotide spliced most efficiently with a 3' splice site UAC. In this context, UAA or UAU were also more efficient 3' splice sites than UAG and competed more efficiently than the wild-type sequence with a 3' splice site UAC. We observed that a U at the first intron nucleotide is used for splicing in combination with 3' splice sites UAG, UAA or UAU. Our data indicate that the 3' splice site is not primarily selected through an interaction with the first intron nucleotide. Selection of the 3' splice site depends critically on its distance from the branchpoint but does not occur by a simple leaky scanning mechanism.  相似文献   

13.
The alternatively spliced 290-nucleotide NS2-specific exon of the parvovirus minute virus of mice (MVM), which is flanked by a large intron upstream and a small intron downstream, constitutively appears both in the R1 mRNA as part of a large 5'-terminal exon (where it is translated in open reading frame 3 [ORF3]), and in the R2 mRNA as an internal exon (where it is translated in ORF2). We have identified a novel bipartite exon enhancer element, composed of CA-rich and purine-rich elements within the 5' and 3' regions of the exon, respectively, that is required to include NS2-specific exon sequences in mature spliced mRNA in vivo. These two compositionally different enhancer elements are somewhat redundant in function: either element alone can at least partially support exon inclusion. They are also interchangeable: either element can function at either position. Either a strong 3' splice site upstream (i.e., the exon 5' terminus) or a strong 5' splice site downstream (i.e., the exon 3' terminus) is sufficient to prevent skipping of the NS2-specific exon, and a functional upstream 3' splice site is required for inclusion of the NS2-specific exon as an internal exon into the mature, doubly spliced R2 mRNA. The bipartite enhancer functionally strengthens these termini: the requirement for both the CA-rich and purine-rich elements can be overcome by improvements to the polypyrimidine tract of the upstream intron 3' splice site, and the purine-rich element also supports exon inclusion mediated through the downstream 5' splice sites. In summary, a suboptimal large-intron polypyrimidine tract, sequences within the downstream small intron, and a novel bipartite exonic enhancer operate together to yield the balanced levels of R1 and R2 observed in vivo. We suggest that the unusual bipartite exonic enhancer functions to mediate proper levels of inclusion of the NS2-specific exon in both singly spliced R1 and doubly spliced R2.  相似文献   

14.
15.
16.
Pre-mRNA 5' splice site activity depends, at least in part, on base complementarity to U1 small nuclear RNA. In transient coexpression assays, defective 5' splice sites can regain activity in the presence of U1 carrying compensatory changes, but it is unclear whether such mutant U1 RNAs can be permanently expressed in mammalian cells. We have explored this issue to determine whether U1 small nuclear RNAs with altered specificity may be of value to rescue targeted mutant genes or alter pre-mRNA processing profiles. This effort was initiated following our observation that U1 with specificity for a splice site associated with an alternative H-ras exon substantially reduced the synthesis of the potentially oncogenic p21ras protein in transient assays. We describe the development of a mammalian complementation system that selects for removal of a splicing-defective intron placed within a drug resistance gene. Complementation was observed in proportion to the degree of complementarity between transfected mutant U1 genes and different defective splice sites, and all cells selected in this manner were found to express mutant U1 RNA. In addition, these cells showed specific activation of defective splice sites presented by an unlinked reporter gene. We discuss the prospects of this approach to permanently alter the expression of targeted genes in mammalian cells.  相似文献   

17.
Nuclear pre-mRNA splicing necessitates specific recognition of the pre-mRNA splice sites. It is known that 5' splice site selection requires base pairing of U6 snRNA with intron positions 4-6. However, no factor recognizing the highly conserved 5' splice site GU has yet been identified. We have tested if the known U6 snRNA-pre-mRNA interaction could be extended to include the first intron nucleotides and the conserved 50GAG52 sequence of U6 snRNA. We observe that some combinations of 5' splice site and U6 snRNA mutations produce a specific synthetic block to the first splicing step. In addition, the U6-G52U allele can switch between two competing 5' splice sites harboring different nucleotides following the cleavage site. These results indicate that U6 snRNA position 52 interacts with the first nucleotide of the intron before 5' splice site cleavage. Some combinations of U6 snRNA and pre-mRNA mutations also blocked the second splicing step, suggesting a role for the corresponding nucleotides in a proofreading step before exon ligation. From studies in diverse organisms, various functions have been ascribed to the conserved U6 snRNA 47ACAGAG52 sequence. Our results suggest that these discrepancies might reflect variations between different experimental systems and point to an important conserved role of this sequence in the splicing reaction.  相似文献   

18.
19.
20.
Imprecise excision of the Caenorhabditis elegans transposon Tc1 from a specific site of insertion within the unc-54 myosin heavy chain gene generates either wild-type or partial phenotypic revertants. Wild-type revertants and one class of partial revertants contain insertions of four nucleotides in the unc-54 third exon (Tc1 "footprints"). Such revertants express large amounts of functional unc-54 myosin despite having what would appear to be frameshifting insertions in the unc-54 third exon. We demonstrate that these Tc1 footprints act as efficient 5' splice sites for removal of the unc-54 third intron. Splicing of these new 5' splice sites to the normal third intron splice acceptor removes the Tc1 footprint from the mature mRNA and restores the normal translational reading frame. Partial revertant unc-54(r661), which contains a single nucleotide substitution relative to the wild-type gene, is spliced similarly, except that the use of its new 5' splice site creates a frameshift in the mature mRNA rather than removing one. In all of these revertants, two alternative 5' splice sites are available to remove intron 3. We determined the relative efficiency with which each alternative 5' splice site is used by stabilizing frameshifted mRNAs with smg(-) genetic backgrounds. In all cases, the upstream member of the two alternative sites is used preferentially (> 75% utilization). This may reflect an inherent preference of the splicing machinery for the upstream member of two closely spaced 5' splice sites. Creation of new 5' splice sites may be a general characteristic of Tc1 insertion and excision events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号