首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用可控冷却速度热处理装置研究了Ti-6. 5Al-3. 5Mo-1. 5Zr-0. 3Si合金β热处理过程中的β晶粒生长及片层组织转变规律。结果表明,合金在β单相区固溶时,随着温度升高和保温时间延长,β晶粒尺寸增大,且加热温度高于1140℃时,β晶粒快速生长。计算了β相区晶粒生长激活能为129. 6 k J·mol-1,并建立了β晶粒生长模型。随冷却速度变化,合金出现全马氏体组织和(α+β)片状组织。原始β晶界在全马氏体组织和(α+β)片状组织中均清晰可见,原始β晶粒呈等轴状特征。(α+β)片以取向各异"集束"形式存在于原始β晶粒内,(α+β)集束内的α片几乎相互平行。(α+β)片层组织特征参数(原始β晶粒尺寸、α片厚度及(α+β)集束尺寸)均随冷却速度降低而增加。α片层可在β晶界和晶内形核,以集束形式生长,但不能穿过β晶界。原始β晶界能对α片层的生长起到约束作用。  相似文献   

2.
Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金本构关系的BP神经网络模型   总被引:2,自引:0,他引:2  
利用THERMECMASTOR-Z型热力模拟试验机,在变形温度为780~1 080 ℃,应变速率为0.001~70.0 s-1条件下对Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金进行等温恒应变速率压缩试验,获得不同变形温度、不同应变速率和不同真应变下的流动应力数据.结合试验数据和神经网络知识,构建了采用BP算法的人工神经网络,训练结束后的神经网络即成为Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金的一个知识基的本构关系模型.利用所建立的BP网络模型对材料的流动应力进行了预测,发现预测值与试验数据吻合良好,说明该BP网络本构关系模型具有较高的精度,可用于指导Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金热加工工艺的制定.  相似文献   

3.
根据Murty失稳判据,利用原始等轴组织的TC11钛合金在780~990℃和0.001~70s-1范围内的等温恒应变速率压缩实验数据,建立了该合金的加工图.依据加工图研究了TC11钛合金的变形机制和变形缺陷与变形热力参数之间的关系.结果表明,在780~990℃和0.001~0.01 s-1范围是超塑性变形区;在780~990℃和高于0.01 s-1范围,易出现β相裂纹和空洞、局部流动以及绝热剪切等流变失稳现象.根据加工图分析,结合微观组织观察结果,并考虑变形抗力的大小,确定出了较佳的变形热力参数范围为850~940℃和0.001~0.01 s-1,最佳的变形热力参数在900℃和0.001 s-1附近.  相似文献   

4.
通过热压缩实验研究Ti-6Al-2Zr-1Mo-1V钛合金在变形温度为1000~1100°C,应变速率为10-3~1.0s-1的条件下的动态再结晶行为。结果表明:在变形温度高于1050°C、应变速率低于0.01s-1时,合金的动态再结晶机制以不连续动态再结晶为主;在变形温度低于1050°C、应变速率高于0.01s-1时,合金的动态再结晶机制以连续动态再结晶为主,同时存在少量的不连续动态再结晶。此外,降低应变速率和升高变形温度均能促进动态再结晶进程并使β变形晶粒细化。  相似文献   

5.
张金波  张延东  魏寿庸 《金属学报》2002,38(Z1):326-328
研究了工业用Ti-6Al-2Zr-1Mo-1V合金铸锭内化学成分的分布、结晶组织特点及铸态材料的室温性能.研究表明铸锭的化学成分均匀、冶金质量良好,能够满足航空用材需求.  相似文献   

6.
采用Gleeble-1500热模拟试验机进行等温恒应变速率热压缩实验,探究了Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金在应变速率为0.1~10 s-1、变形温度为1173~1323 K及最大变形量为60%条件下的高温塑性变形行为。探究了工艺参数对真应力-真应变曲线的影响,采用Arrhenuis模型构建了耦合应变的本构方程,基于动态材料模型及Babu流变失稳准则构建了热加工图。结果表明,Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金的流动应力随应变速率的减小及变形温度的增加呈下降并趋于平稳的趋势,且温度敏感性在低温区比高温区强。真应力-真应变曲线在变形温度1173~1273 K下的α+β相区呈现出动态再结晶特征,在变形温度为1323 K的β相区呈现出动态回复特征。建立的耦合应变的Arrhenuis本构方程具有较高的预测精度。利用Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金热加工图,确定了该合金最优塑性变形工艺参数为变形温度为1230~1323 K和应变速率为0.1~0.816 s-1。  相似文献   

7.
Ti-6Al-2Zr-1Mo-1V合金厚板的组织与性能   总被引:3,自引:0,他引:3  
Ti-6Al-2Zl-1Mo-1V厚板4种典型组织形貌与性能有一定的对应关系.等轴组织具有较高的强度和塑性,片状组织具有较高的冲击和断裂韧性.  相似文献   

8.
热轧工艺对Ti-6Al-2Zr-1Mo-1V合金显微组织和拉伸性能的影响   总被引:1,自引:0,他引:1  
研究了热轧温度、变形程度对Ti-6Al-2Zr-1Mo-1V合金显微组织和拉伸性能的影响.结果表明通过对热轧工艺的调整,可以使合金的强度、塑性在较大范围内变化.两相区变形可获得良好的塑性;β区变形能保证合金较高的强度;一火β区变形+ 一火两相区变形可获得较好的强塑性配合.  相似文献   

9.
对Ti-6Al-2Zr-1Mo-1V合金进行等温恒应变速率压缩试验,利用压缩试验数据对比Prasad失稳准则和唯象型失稳准则,发现2种准则均预测出合金在应变速率为0.32~10 s-1范围内的塑性流动失稳现象,该失稳区随变形温度的降低具有逐渐向低应变速率范围扩展的趋势。经微观组织观察发现,Prasad准则不能预测到合金在750~800 ℃,0.001~0.0032 s-1范围发生的局部流动和弯折失稳,而唯象型准则对合金在770~870 ℃、0.01~0.32 s-1和900~950 ℃、0.32~3.16 s-1区域出现的晶界裂纹、孔洞以及局部流动不能进行准确预测。结合2种准则的优缺点,提出预测合金塑性流动失稳的新方法。  相似文献   

10.
研究了Ti-6Al-2Zr-1Mo-1V合金环锻件的宏观和微观组织,分析了锻件的变形和热处理工艺。对Ti-6Al-2Zr-1Mo-1V合金环锻件采用了β→α β温度区域的热变形工艺,即在卢区温度下开始变形,α β区温度下结束变形,锻件的退火温度略低于β相的临界分解温度了TK;采用β→α β温度区域热变形的锻件具有中等强度水平,良好的室温冲击性能和高温蠕变、持久性能;β→α β温度区域的变形工艺具有简化变形工序、降低变形抗力的优点,但变形时间的控制较难掌握,需一定的实践探索。  相似文献   

11.
通过高温压缩模拟实验,分析了Ti-6Al-2Zr-1Mo-1V合金在变形温度为850~1100℃,应变速率为0.01~10 s-1条件下的高温变形力学行为规律,并利用线性回归方法计算了不同温度范围内的应力指数n和变形激活能Q,获得了该合金高温变形力学行为计算模型.结果表明,Ti-6Al-2Zr-1Mo-1V合金对变形温度和应变速率非常敏感.在恒温时流动应力随应变速率的增大而增大,在恒应变速率时随变形温度的升高而降低.在850~950℃时,n、Q分别为7.0874和610.463 kJ/mol;而在950~1100℃时,n=4.7324,Q=238.030 kJ/mol,该预测模型的计算值与实测值之间的相对误差分别为6.341%和6.957%.  相似文献   

12.
Ti-6Al-2Zr-1Mo-1V合金的双曲正弦本构关系   总被引:1,自引:0,他引:1  
用THERMECMASTOR-Z型热模拟试验机对Ti-6Al-2Zr-1Mo-1V合金进行了变形温度为750~1 100℃,应变速率为10-1~10 s-1,变形程度为50%的热压缩试验.研究了变形工艺参数对流动应力的影响,计算了不同温度范围的应力指数n和变形激活能Q,并建立了该合金的双曲正弦本构方程.结果表明,在750~950℃时,该合金的真应力-应变曲线呈流动软化型,1 000~1 100℃时呈稳态流动型;在750~1 000℃时变形激活能为828.9 kJ/mol,1 000~1 100℃时为197.1kJ/mol,预示在不同的温度区间具有不同的变形机制.  相似文献   

13.
采用高真空非自耗电弧熔炼炉对Ti-35Nb-2Zr-0.3O (质量分数,%)合金进行熔炼。运用OM、XRD、SEM、TEM和静态热机械分析仪对Ti-35Nb-2Zr-0.3O合金进行表征,研究冷轧形变对合金显微组织及热膨胀行为的影响。结果表明:Ti-35Nb-2Zr-0.3O合金在冷轧过程中产生应力诱发马氏体α"(stress-induced martensiticα",SIMα")相,并形成平行于轧制方向的强110织构。等轴晶组织的Ti-35Nb-2Zr-0.3O合金表现出正常的热膨胀行为。形变后,合金的热膨胀行为出现异常现象,轧制方向表现为负膨胀,负膨胀程度随着形变量的增加而增大,截面方向表现为大于固溶态的正膨胀。30%形变合金的轧制方向在室温到250℃具有Invar效应,这一现象归因于SIMα"相变、晶格畸变和110织构的形成。冷轧态Ti-35Nb-2Zr-0.3O合金在室温到110℃的异常膨胀归因于SIMα"相到β相的晶格转变,而在高于110℃的异常膨胀行为归因于ω相和α相的析出。  相似文献   

14.
利用Thermecmastor-Z热模拟机进行Ti-6Al-2Zr-1Mo-1V钛合金在不同工艺参数(变形温度800,850,900,1000,1050°C,应变速率0.01,0.1,1,10s-1)条件下的热模拟压缩试验,研究变形温度和应变速率对Ti-6Al-2Zr-1Mo-1V钛合金流变应力的影响。以试验数据为基础,应用BP神经网络算法原理,建立该合金的高温流动应力与变形温度、应变和应变速率对应关系的高温本构关系预测模型。结果表明,运用神经网络方法建立的Ti-6Al-2Zr-1Mo-1V钛合金本构关系模型具有较高的预测精度,与试验结果吻合良好。此外,运用Visual Basic可视化编程语言设计并开发了具有神经网络功能的用户界面。  相似文献   

15.
《铸造技术》2017,(3):521-524
Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金经二次熔炼、锻造成棒材,然后再浇铸成试棒。介绍了这种合金的铸态室温及高温拉伸性能。试验表明,在600℃时的高温强度与塑性匹配较好,可用作为600℃高温结构件用。同时,分析了合金经不同制度热处理后的显微组织、室温拉伸、高温拉伸及持久性能变化。结果表明:合金在960℃×1.5 h,AC+550℃×8 h,AC处理后得到网篮组织,表现出良好的综合力学性能。  相似文献   

16.
在Gleeble-1500D热模拟实验机上对Ti-6Al-3Nb-2Zr-1Mo合金双态组织进行热模拟实验,变形温度为850~1050℃,应变速率为0.010~1.000 s-1,变形量为60%;根据不同条件下的应力峰值计算得其热变形激活能Q为786.609 kJ·m-1,并构建本构方程,最后在动态模型的基础上建立热加...  相似文献   

17.
Ti-0.3Mo-0.8Ni合金管材冷轧开裂原因研究   总被引:2,自引:0,他引:2  
研究了润滑剂、冷轧道次加工率和冷轧送进量对Ti-0.3Mo-0.8Ni合金管材开裂比率的影响。结果表明,冷轧时不同的润滑剂对应着不同的金属变形温度,使用使金属变形温度保持在150~200℃之间的B润滑剂,可使Ti-0.3Mo-0.8Ni合金管材开裂比率比较低,为5%左右;而两辊冷轧道次加工率为40%,多辊冷轧道次加工率为30%和25%。冷轧送进量选为中等大小,可有效地控制Ti-0.3Mo-0.8Ni合金管材的开裂比率在较低的范围内波动,从而提高了Ti-0.3Mo-0.8Ni合金管材冷轧成品率。  相似文献   

18.
研究三种锻造工艺条件下 Ti?6.5Al?1Mo?1V?2Zr 合金大规格棒材的力学性能、微观组织和拉伸断口。结果表明:采用拔长方式在β区高温和低温分别进行开坯锻造和成品锻造,获得的棒材的组织为粗大的魏氏组织,力学性能特别是塑性差,室温拉伸断口为脆性断口;采用镦拔方式在β区高温进行开坯锻造,再采用拔长方式在α+β区进行成品锻造,获得棒材的组织为双态组织,具有最佳的综合力学性能,室温拉伸断口为塑性断口。要获得合格的 Ti?6.5Al?1Mo?1V?2Zr 棒材,关键是开在坯锻造阶段进行充分镦拔以破碎铸锭原始组织,并在成品锻造阶段控制锻造温度和变形量。  相似文献   

19.
利用Gleeble-1500热模拟试验机对Ti-6Al-3Nb-2Zr-1Mo合金片层组织进行热压缩实验,实验温度为850~1050℃,应变速率为0. 01~1 s~(-1),变形量为60%。实验结果表明,热加工温度一定时,流变应力随变形量和应变速率的增加而急剧增加直至达到峰值,然后下降,最后趋于平缓,这是由加工硬化和动态再结晶所致。应变速率恒定时,随着变形温度的上升,流变应力随之降低。绘制应力-应变曲线,计算其热变形激活能Q为748. 845 k J·mol~(-1),构建本构方程,并在动态材料模型的基础上建立了热加工图。并通过加工图确定3个失稳区,变形温度为980~1030℃、应变速率为0. 3~1 s~(-1)时合金发生剪切,形成绝热剪切带。结合加工图,确定了适合的加工区域,即加工温度为970~1010℃,应变速率为0. 03~0. 07 s~(-1)。  相似文献   

20.
利用微弧氧化技术,在Ti-6Al-2Zr-1Mo-3Nb合金表面制备陶瓷涂层。用扫描电镜和X射线衍射仪观察并分析陶瓷膜层的组织形貌和相结构,用电子万能材料试验机和数字万用表研究膜层的结合强度和绝缘性,并用MMS-1G高温高速销盘摩擦磨损试验机和YWX/Q-750盐雾试验机考察涂层的摩擦性能和耐腐蚀性能。结果表明:陶瓷层主要由金红石TiO2相和锐钛矿TiO2相构成,膜基结合强度达到30MPa以上,膜层绝缘性和耐腐蚀性良好,耐磨性得到明显改善,涂层的磨损机制表现为轻微的磨粒磨损与粘着磨损。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号