首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Counting the number of perfect matchings in graphs is a computationally hard problem. However, in the case of planar graphs, and even for K3,3-free graphs, the number of perfect matchings can be computed efficiently. The technique to achieve this is to compute a Pfaffian orientation of a graph. In the case of K5-free graphs, this technique will not work because some K5-free graphs do not have a Pfaffian orientation. We circumvent this problem and show that the number of perfect matchings in K5-free graphs can be computed in polynomial time. We also parallelize the sequential algorithm and show that the problem is in TC2. We remark that our results generalize to graphs without singly-crossing minor.  相似文献   

2.
In a graph G a matching is a set of edges in which no two edges have a common endpoint. An induced matching is a matching in which no two edges are linked by an edge of G. The maximum induced matching (abbreviated MIM) problem is to find the maximum size of an induced matching for a given graph G. This problem is known to be NP-hard even on bipartite graphs or on planar graphs. We present a polynomial time algorithm which given a graph G either finds a maximum induced matching in G, or claims that the size of a maximum induced matching in G is strictly less than the size of a maximum matching in G. We show that the MIM problem is NP-hard on line-graphs, claw-free graphs, chair-free graphs, Hamiltonian graphs and r-regular graphs for r \geq 5. On the other hand, we present polynomial time algorithms for the MIM problem on (P 5,D m )-free graphs, on (bull, chair)-free graphs and on line-graphs of Hamiltonian graphs.  相似文献   

3.
The minimum k-terminal cut problem is of considerable theoretical interest and arises in several applied areas such as parallel and distributed computing, VLSI circuit design, and networking. In this paper we present two new approximation and exact algorithms for this problem on an n-vertex undirected weighted planar graph G. For the case when the k terminals are covered by the boundaries of m > 1 faces of G, we give a min{O(n 2 log n logm), O(m 2 n 1.5 log2 n + k n)} time algorithm with a (2–2/k)-approximation ratio (clearly, m \le k). For the case when all k terminals are covered by the boundary of one face of G, we give an O(n k3 + (n log n)k 2) time exact algorithm, or a linear time exact algorithm if k = 3, for computing an optimal k-terminal cut. Our algorithms are based on interesting observations and improve the previous algorithms when they are applied to planar graphs. To our best knowledge, no previous approximation algorithms specifically for solving the k-terminal cut problem on planar graphs were known before. The (2–2/k)-approximation algorithm of Dahlhaus et al. (for general graphs) takes O(k n 2 log n) time when applied to planar graphs. Our approximation algorithm for planar graphs runs faster than that of Dahlhaus et al. by at least an O(k/logm) factor (m \le k).  相似文献   

4.
We present a randomized algorithm for finding maximum matchings in planar graphs in timeO(n ω/2), whereω is the exponent of the best known matrix multiplication algorithm. Sinceω<2.38, this algorithm breaks through theO(n 1.5) barrier for the matching problem. This is the first result of this kind for general planar graphs. We also present an algorithm for generating perfect matchings in planar graphs uniformly at random usingO(n ω/2) arithmetic operations. Our algorithms are based on the Gaussian elimination approach to maximum matchings introduced in [16]. This research was supported by KBN Grant 4T11C04425.  相似文献   

5.
The minimum k-terminal cut problem is of considerable theoretical interest and arises in several applied areas such as parallel and distributed computing, VLSI circuit design, and networking. In this paper we present two new approximation and exact algorithms for this problem on an n-vertex undirected weighted planar graph G. For the case when the k terminals are covered by the boundaries of m > 1 faces of G, we give a min{O(n 2 log n logm), O(m 2 n 1.5 log2 n + k n)} time algorithm with a (2–2/k)-approximation ratio (clearly, m \le k). For the case when all k terminals are covered by the boundary of one face of G, we give an O(n k3 + (n log n)k 2) time exact algorithm, or a linear time exact algorithm if k = 3, for computing an optimal k-terminal cut. Our algorithms are based on interesting observations and improve the previous algorithms when they are applied to planar graphs. To our best knowledge, no previous approximation algorithms specifically for solving the k-terminal cut problem on planar graphs were known before. The (2–2/k)-approximation algorithm of Dahlhaus et al. (for general graphs) takes O(k n 2 log n) time when applied to planar graphs. Our approximation algorithm for planar graphs runs faster than that of Dahlhaus et al. by at least an O(k/logm) factor (m \le k).  相似文献   

6.
Given a set of pointsV in the plane, the Euclidean bottleneck matching problem is to match each point with some other point such that the longest Euclidean distance between matched points, resulting from this matching, is minimized. To solve this problem, we definek-relative neighborhood graphs, (kRNG) which are derived from Toussaint's relative neighborhood graphs (RNG). Two points are calledk-relative neighbors if and only if there are less thank points ofV which are closer to both of the two points than the two points are to each other. AkRNG is an undirected graph (V,E r k ) whereE r k is the set of pairs of points ofV which arek-relative neighbors. We prove that there exists an optimal solution of the Euclidean bottleneck matching problem which is a subset ofE r 17 . We also prove that ¦E r k ¦ < 18kn wheren is the number of points in setV. Our algorithm would construct a 17RNG first. This takesO(n 2) time. We then use Gabow and Tarjan's bottleneck maximum cardinality matching algorithm for general graphs whose time-complexity isO((n logn)0.5 m), wherem is the number of edges in the graph, to solve the bottleneck maximum cardinality matching problem in the 17RNG. This takesO(n 1.5 log0.5 n) time. The total time-complexity of our algorithm for the Euclidean bottleneck matching problem isO(n 2 +n 1.5 log0.5 n).  相似文献   

7.
The diameter of a graph is an important factor for communication as it determines the maximum communication delay between any pair of processors in a network. Graham and Harary [N. Graham, F. Harary, Changing and unchanging the diameter of a hypercube, Discrete Applied Mathematics 37/38 (1992) 265-274] studied how the diameter of hypercubes can be affected by increasing and decreasing edges. They concerned whether the diameter is changed or remains unchanged when the edges are increased or decreased. In this paper, we modify three measures proposed in Graham and Harary (1992) to include the extent of the change of the diameter. Let D-k(G) is the least number of edges whose addition to G decreases the diameter by (at least) k, D+0(G) is the maximum number of edges whose deletion from G does not change the diameter, and D+k(G) is the least number of edges whose deletion from G increases the diameter by (at least) k. In this paper, we find the values of D-k(Cm), D-1(Tm,n), D-2(Tm,n), D+1(Tm,n), and a lower bound for D+0(Tm,n) where Cm be a cycle with m vertices, Tm,n be a torus of size m by n.  相似文献   

8.
The Maximum Induced Matching (MIM) Problem asks for a largest set of pairwise vertex-disjoint edges in a graph which are pairwise of distance at least two. It is well-known that the MIM problem is NP-complete even on particular bipartite graphs and on line graphs. On the other hand, it is solvable in polynomial time for various classes of graphs (such as chordal, weakly chordal, interval, circular-arc graphs and others) since the MIM problem on graph G corresponds to the Maximum Independent Set problem on the square G *=L(G)2 of the line graph L(G) of G, and in some cases, G * is in the same graph class; for example, for chordal graphs G, G * is chordal. The construction of G *, however, requires time, where m is the number of edges in G. Is has been an open problem whether there is a linear-time algorithm for the MIM problem on chordal graphs. We give such an algorithm which is based on perfect elimination order and LexBFS.  相似文献   

9.
《国际计算机数学杂志》2012,89(11):2408-2418
The matching preclusion number of a graph is the minimum number of edges whose deletion results in a graph that has neither perfect matchings nor almost-perfect matchings. In this paper, we find this number for the (n, k)-bubble-sort graphs and classify all the optimal solutions.  相似文献   

10.
The H-Minor containment problem asks whether a graph G contains some fixed graph H as a minor, that is, whether H can be obtained by some subgraph of G after contracting edges. The derivation of a polynomial-time algorithm for H-Minor containment is one of the most important and technical parts of the Graph Minor Theory of Robertson and Seymour and it is a cornerstone for most of the algorithmic applications of this theory. H-Minor containment for graphs of bounded branchwidth is a basic ingredient of this algorithm. The currently fastest solution to this problem, based on the ideas introduced by Robertson and Seymour, was given by Hicks in [I.V. Hicks, Branch decompositions and minor containment, Networks 43 (1) (2004) 1-9], providing an algorithm that in time O(3k2⋅(h+k−1)!m) decides if a graph G with m edges and branchwidth k, contains a fixed graph H on h vertices as a minor. In this work we improve the dependence on k of Hicks’ result by showing that checking if H is a minor of G can be done in time O(2(2k+1)⋅logkh2k⋅22h2m). We set up an approach based on a combinatorial object called rooted packing, which captures the properties of the subgraphs of H that we seek in our dynamic programming algorithm. This formulation with rooted packings allows us to speed up the algorithm when G is embedded in a fixed surface, obtaining the first algorithm for minor containment testing with single-exponential dependence on branchwidth. Namely, it runs in time 2O(k)h2k⋅2O(h)n, with n=∣V(G)∣. Finally, we show that slight modifications of our algorithm permit to solve some related problems within the same time bounds, like induced minor or contraction containment.  相似文献   

11.
The matching preclusion problem, introduced by Brigham et al. [R.C. Brigham, F. Harary, E.C. Violin, and J. Yellen, Perfect-matching preclusion, Congressus Numerantium 174 (2005) 185-192], studies how to effectively make a graph have neither perfect matchings nor almost perfect matchings by deleting as small a number of edges as possible. Extending this concept, we consider a more general matching preclusion problem, called the strong matching preclusion, in which deletion of vertices is additionally permitted. We establish the strong matching preclusion number and all possible minimum strong matching preclusion sets for various classes of graphs.  相似文献   

12.
Given a graph with edges colored Red and Blue, we study the problem of sampling and approximately counting the number of matchings with exactly k Red edges. We solve the problem of estimating the number of perfect matchings with exactly k Red edges for dense graphs. We study a Markov chain on the space of all matchings of a graph that favors matchings with k Red edges. We show that it is rapidly mixing using non-traditional canonical paths that can backtrack. We show that this chain can be used to sample matchings in the 2-dimensional toroidal lattice of any fixed size with k Red edges, where the horizontal edges are Red and the vertical edges are Blue. An extended abstract appeared in J.R. Correa, A. Hevia and M.A. Kiwi (eds.) Proceedings of the 7th Latin American Theoretical Informatics Symposium, LNCS 3887, pp. 190–201, Springer, 2006. N. Bhatnagar’s and D. Randall’s research was supported in part by NSF grants CCR-0515105 and DMS-0505505. V.V. Vazirani’s research was supported in part by NSF grants 0311541, 0220343 and CCR-0515186. N. Bhatnagar’s and E. Vigoda’s research was supported in part by NSF grant CCR-0455666.  相似文献   

13.
Given a digraph G=(VG,AG), an even factor M?AG is a set formed by node-disjoint paths and even cycles. Even factors in digraphs were introduced by Geelen and Cunningham and generalize path matchings in undirected graphs. Finding an even factor of maximum cardinality in a general digraph is known to be NP-hard but for the class of odd-cycle symmetric digraphs the problem is polynomially solvable. So far the only combinatorial algorithm known for this task is due to Pap; its running time is O(n 4) (hereinafter n denotes the number of nodes in G and m denotes the number of arcs or edges). In this paper we introduce a novel sparse recovery technique and devise an O(n 3logn)-time algorithm for finding a maximum cardinality even factor in an odd-cycle symmetric digraph. Our technique also applies to other similar problems, e.g. finding a maximum cardinality square-free simple b-matching.  相似文献   

14.
We give improved parameterized algorithms for two “edge” problems MAXCUT and MAXDAG, where the solution sought is a subset of edges. MAXCUT of a graph is a maximum set of edges forming a bipartite subgraph of the given graph. On the other hand, MAXDAG of a directed graph is a set of arcs of maximum size such that the graph induced on these arcs is acyclic. Our algorithms are obtained through new kernelization and efficient exact algorithms for the optimization versions of the problems. More precisely our results include:
(i)
a kernel with at most αk vertices and βk edges for MAXCUT. Here 0<α?1 and 1<β?2. Values of α and β depends on the number of vertices and the edges in the graph;
(ii)
a kernel with at most 4k/3 vertices and 2k edges for MAXDAG;
(iii)
an O(k1.2418) parameterized algorithm for MAXCUT in undirected graphs. This improves the O(k1.4143)1 algorithm presented in [E. Prieto, The method of extremal structure on the k-maximum cut problem, in: The Proceedings of Computing: The Australasian Theory Symposium (CATS), 2005, pp. 119-126];
(iv)
an O(n2) algorithm for optimization version of MAXDAG in directed graphs. This is the first such algorithm to the best of our knowledge;
(v)
an O(k2) parameterized algorithm for MAXDAG in directed graphs. This improves the previous best of O(k4) presented in [V. Raman, S. Saurabh, Parameterized algorithms for feedback set problems and their duals in tournaments, Theoretical Computer Science 351 (3) (2006) 446-458];
(vi)
an O(k16) parameterized algorithm to determine whether an oriented graph having m arcs has an acyclic subgraph with at least m/2+k arcs. This improves the O(k2) algorithm given in [V. Raman, S. Saurabh, Parameterized algorithms for feedback set problems and their duals in tournaments, Theoretical Computer Science 351 (3) (2006) 446-458].
In addition, we show that if a directed graph has minimum out degree at least f(n) (some function of n) then Directed Feedback Arc Set problem is fixed parameter tractable. The parameterized complexity of Directed Feedback Arc Set is a well-known open problem.  相似文献   

15.
We present exact algorithms with exponential running times for variants of n-element set cover problems, based on divide-and-conquer and on inclusion–exclusion characterizations. We show that the Exact Satisfiability problem of size l with m clauses can be solved in time 2 m l O(1) and polynomial space. The same bounds hold for counting the number of solutions. As a special case, we can count the number of perfect matchings in an n-vertex graph in time 2 n n O(1) and polynomial space. We also show how to count the number of perfect matchings in time O(1.732 n ) and exponential space. We give a number of examples where the running time can be further improved if the hypergraph corresponding to the set cover instance has low pathwidth. This yields exponential-time algorithms for counting k-dimensional matchings, Exact Uniform Set Cover, Clique Partition, and Minimum Dominating Set in graphs of degree at most three. We extend the analysis to a number of related problems such as TSP and Chromatic Number.  相似文献   

16.
Given a set of pointsV in the plane, the Euclidean bottleneck matching problem is to match each point with some other point such that the longest Euclidean distance between matched points, resulting from this matching, is minimized. To solve this problem, we definek-relative neighborhood graphs, (kRNG) which are derived from Toussaint's relative neighborhood graphs (RNG). Two points are calledk-relative neighbors if and only if there are less thank points ofV which are closer to both of the two points than the two points are to each other. AkRNG is an undirected graph (V,E r k ) whereE r k is the set of pairs of points ofV which arek-relative neighbors. We prove that there exists an optimal solution of the Euclidean bottleneck matching problem which is a subset ofE r 17 . We also prove that ¦E r k ¦ < 18kn wheren is the number of points in setV. Our algorithm would construct a 17RNG first. This takesO(n 2) time. We then use Gabow and Tarjan's bottleneck maximum cardinality matching algorithm for general graphs whose time-complexity isO((n logn)0.5 m), wherem is the number of edges in the graph, to solve the bottleneck maximum cardinality matching problem in the 17RNG. This takesO(n 1.5 log0.5 n) time. The total time-complexity of our algorithm for the Euclidean bottleneck matching problem isO(n 2 +n 1.5 log0.5 n).This research was partially supported by a grant from the National Science Council of the Republic of China under Grant NSC-78-0408-E-007-05.  相似文献   

17.
In a graph G, a k-container Ck(u,v) is a set of k disjoint paths joining u and v. A k-container Ck(u,v) is k∗-container if every vertex of G is passed by some path in Ck(u,v). A graph G is k∗-connected if there exists a k∗-container between any two vertices. An m-regular graph G is super-connected if G is k∗-connected for any k with 1?k?m. In this paper, we prove that the recursive circulant graphs G(2m,4), proposed by Park and Chwa [Theoret. Comput. Sci. 244 (2000) 35-62], are super-connected if and only if m≠2.  相似文献   

18.
Motivated by the research in reconfigurable memory array structures, this paper studies the complexity and algorithms for the constrained minimum vertex cover problem on bipartite graphs (min-cvcb) defined as follows: given a bipartite graph G=(V,E) with vertex bipartition V=UL and two integers ku and kl, decide whether there is a minimum vertex cover in G with at most ku vertices in U and at most kl vertices in L. It is proved in this paper that the min-cvcb problem is NP-complete. This answers a question posed by Hasan and Liu. A parameterized algorithm is developed for the problem, in which classical results in matching theory and recently developed techniques in parameterized computation theory are nicely combined and extended. The algorithm runs in time O(1.26ku+kl+(ku+kl)|G|) and significantly improves previous algorithms for the problem.  相似文献   

19.
《国际计算机数学杂志》2012,89(8):1635-1654
In this paper, we consider the minimum maximal matching problem in some classes of graphs such as regular graphs. We show that the minimum maximal matching problem is NP-hard even in regular bipartite graphs, and a polynomial time exact algorithm is given for almost complete regular bipartite graphs. From the approximation point of view, it is well known that any maximal matching guarantees the approximation ratio of 2 but surprisingly very few improvements have been obtained. In this paper we give improved approximation ratios for several classes of graphs. For example any algorithm is shown to guarantee an approximation ratio of (2-o(1)) in graphs with high average degree. We also propose an algorithm guaranteeing for any graph of maximum degree Δ an approximation ratio of (2?1/Δ), which slightly improves the best known results. In addition, we analyse a natural linear-time greedy algorithm guaranteeing a ratio of (2?23/18k) in k-regular graphs admitting a perfect matching.  相似文献   

20.
The matching preclusion number of a graph is the minimum number of edges whose deletion results in a graph that has neither perfect matchings nor almost-perfect matchings. For many interconnection networks, the optimal sets are precisely those induced by a single vertex. In this paper, we look for obstruction sets beyond these sets. We introduce the conditional matching preclusion number of a graph. It is the minimum number of edges whose deletion results in a graph with no isolated vertices that has neither perfect matchings nor almost-perfect matchings. We find this number and classify all optimal sets for several basic classes of graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号