首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 546 毫秒
1.
安徽某硫铁矿尾矿铁品位为34.75%,铁主要以赤褐铁矿的形式存在。为利用该尾矿中铁,对其进行选铁试验研究。结果表明:采用弱磁—弱磁尾矿1粗1精1扫强磁选—强磁精选尾矿与扫选精矿合并后磨至-0.045 mm占90%—强磁再选流程,最终可获得产率为38.00%、铁品位为59.98%、回收率为65.59%的铁精矿,分选指标较好,可为该尾矿中铁的回收提供依据。  相似文献   

2.
王浩明  张成龙 《现代矿业》2020,36(7):162-164
内蒙古某铁矿石铁品位为34.47%,主要铁矿物为菱铁矿和磁铁矿,赤褐铁矿少量。为了确定该矿石中磁铁矿的高效回收工艺进行了试验研究。结果表明:矿石采用磨矿—弱磁粗选—再磨—2次弱磁精选—1粗1精3扫反浮选流程处理,在一段磨矿细度为-0.076 mm 50%,二段磨矿细度为-0.043 mm 90%的情况下,获得了铁品位为65.41%、回收率为32.61%的磁铁矿精矿  相似文献   

3.
云南某尾矿含铁13.88%,主要以菱铁矿的形式存在,具有回收利用价值。采用“强磁选—流态化磁化焙烧—弱磁选”工艺回收铁,考察了矿样焙烧前后铁物相的转变。结果表明,强磁选可以获得产率21.60%、铁品位27.18%、铁作业回收率40.19%的铁粗精矿;铁粗精矿采用550℃预氧化7.5 min并在温度450℃、还原势R=0.6条件下还原磁化焙烧7.5 min,能保持还原产物中Fe3O4的稳定性,无Fe O生成,保证了铁氧化物的高磁性转化率和强适应性,获得产率90.84%、铁品位30.02%的焙砂;焙砂经弱磁选可获得产率35.29%、铁品位60.51%、作业铁回收率71.13%的磁铁精矿。研究成果为尾矿资源综合利用及难处理铁矿资源高效利用提供了有益参考。  相似文献   

4.
王威  刘红召  曹耀华  高照国 《金属矿山》2013,42(12):147-150
江西某铁尾矿中尚含有38.74%的铁,但98.49%以褐铁矿的形式存在。为了给该尾矿的综合利用提供技术参考,以河南平顶山某无烟煤为还原剂,对其进行了磁化焙烧-磁选工艺研究。结果表明:将该尾矿在煤粉占尾矿+煤粉混合料的质量分数为5%、温度为850 ℃的条件下磁化焙烧60 min,焙烧产物在一段磨矿细度为-0.037 mm占92%、二段磨矿细度为-0.037 mm占97%、粗选场强为192 kA/m、精选场强为170 kA/m条件下经过两段磨矿、1粗2精弱磁选或两段磨矿、1粗3精弱磁选,分别可以获得铁品位为55.75%、铁回收率为78.50%和铁品位为56.24%、铁回收率为74.81%的铁精矿。  相似文献   

5.
基于流态化焙烧手段,对鞍山某含菱铁矿难选混合铁矿预富集精矿的磁化焙烧过程物相转变行为进行了研究.参照工业还原气条件的直接磁化焙烧结果显示,预富集精矿中的菱铁矿会产出弱磁FeO,降低磁化率.采用氧化—还原的工艺,可以将菱铁矿改性为弱磁赤铁矿α-Fe2O3和磁赤铁矿γ-Fe2O3,避免分解产物FeO存在.但后续500~55...  相似文献   

6.
西北某难选铁矿石中主要铁矿物为磁铁矿和镜铁矿,其中磁铁矿与镜铁矿、镜铁矿与石英嵌布关系密切。对该矿石进行了磨选工艺技术条件研究,结果表明,采用磨矿-1粗1精弱磁选-强磁粗选-强磁粗精矿再磨-强磁精选流程处理,可以获得铁品位为66.39%、回收率为40.94%的弱磁精矿和铁品位为63.41%、回收率为37.27%的强磁精矿,综合精矿铁品位为64.95%、回收率为78.21%。  相似文献   

7.
针对海南儋州某褐铁矿矿石性质,采用阶段磨矿多段分选工艺,进行了强磁选、絮凝浮选、磁化焙烧及弱磁选等选矿试验研究。第一段磨矿细度为-0.074 mm68%的原矿经一次强磁粗扫选,混合精矿进入二次磨矿,-0.074mm占95%的磨矿产品絮凝去泥后进入混合胺反浮选,浮选精矿再磁化焙烧—弱磁选,可得到铁品位60.45%、回收率52.48%的最终精矿。  相似文献   

8.
酒钢镜铁山式镜铁矿矿物组成复杂,嵌布粒度细微,是一种难选的红铁矿,磁化焙烧—磁选是其较好的分选方法。但生产及研究发现,磁化焙烧—磁选精矿中Mg、Mn含量偏高,降低了其含铁品位。为查明原因,对原矿、焙烧矿、磁选精矿及尾矿进行了详细的微观分析。分析结果表明,原矿中的Mg、Mn元素主要存在于褐铁矿、菱铁矿及其铁白云石之中,极少分布于镜铁矿中;经磁化焙烧之后,大多镜铁矿已经转变成磁铁矿,而菱铁矿、褐铁矿与铁白云石受热分解,生成强磁性的镁、锰、铁尖晶石矿物,因此造成铁精矿中的Mg、Mn元素含量偏高。  相似文献   

9.
分别采取舞阳矿业有限责任公司八台铁矿选矿厂弱磁粗选精矿、高频细筛筛下产物及最终精矿样品进行实验室磁筛精选试验,结果显示:弱磁选粗精矿或高频细筛筛下产物隔除+0.3 mm粗颗粒后用磁筛进行1次精选,可直接获得铁品位、作业产率、铁作业回收率分别在66%、82%、94%以上的合格铁精矿;原最终精矿隔除+0.3 mm粗颗粒后用磁筛进行1次精选,铁品位可由65.5%左右提高到近68%。这说明磁筛若应用于八台铁矿选矿厂,将在简化流程、增产节能、提高铁精矿质量等方面取得显著成效。  相似文献   

10.
以碳作为还原剂,对某镜铁矿0~15 mm粒级粉矿进行了回转窑磁化焙烧-磁选试验研究。结果表明,还原剂与镜铁矿配比为2.5%,在焙烧温度820 ℃、焙烧时间30 min条件下经回转窑磁化焙烧,焙烧矿磨至-0.048 mm粒级占80%,在磁场强度120 kA/m条件下弱磁选获得铁精矿,其中给矿粒级0~0.5 mm所得弱磁选精矿平均全铁品位57.27%、平均铁回收率83.24%; 0.5~1.0 mm粒级所得弱磁选精矿平均全铁品位57.55%、平均铁回收率82.92%; 给矿粒级1~5 mm所得弱磁选精矿平均全铁品位57.58%、平均铁回收率89.31%,给矿粒级5~15 mm所得弱磁选精矿全铁品位58.36%、铁回收率84.40%; 全粒级弱磁选精矿平均全铁品位57.70%、平均回收率84.97%。  相似文献   

11.
甘肃镜铁山矿采用竖炉磁化焙烧—弱磁选—反浮选工艺处理100~15 mm的镜铁矿石,可获得铁品位58.5%左右、铁回收率78%左右的铁精矿;对15~0 mm的粉矿采用磨矿—强磁选工艺处理,仅能获得铁品位为47.5%左右、铁回收率为60%左右的铁精矿。为了提高粉矿分选指标,改善烧结料的品质,对粉矿中的15~5 mm粒级进行了磁化焙烧—弱磁选试验。结果表明,在煤粉与试样的质量比为2%,煤粉粒度为1~0 mm,焙烧温度为810℃,焙烧时间为60 min,焙烧产物磨矿细度为-0.074 mm占80%,弱磁选磁场强度为91.56 kA/m条件下,可获得铁品位为55.80%、铁回收率为83.97%的铁精矿。  相似文献   

12.
鞍钢东部尾矿样铁品位为10.64%,FeO含量为2.71%,铁主要以赤(褐)铁矿形式存在,磁铁矿少量,且这些铁矿物嵌布粒度较细,单体解离度较低,常规选矿工艺难以获得高品质的铁精矿。为解决该二次资源的开发利用问题,对有代表性试样进行了选矿试验研究。结果表明,采用筒式弱磁选—立环高梯度强磁选的初级预富集工艺处理,抛尾产率达49.48%,获得铁品位为16.24%、铁回收率为78.54%的初级预富集精矿;初级预富集精矿在磨矿细度为-0.043 mm占90%的情况下,采用筒式弱磁选—立环高梯度强磁选工艺处理,可获得铁品位为32.08%、铁回收率为62.68%的预富集精矿;采用弱磁选1—立环高梯度强磁选1初级预富集—初级预富集精矿细磨—弱磁选2—立环高梯度强磁选2再富集的阶段磨选流程处理试样,可获得铁品位32.08%、铁回收率62.68%的磁选预富集精矿,抛尾产率达79.21%,这有效降低了后续焙烧—磁选系统处理量,从而大幅度降低了后续生产成本,为二次铁矿石资源的高效利用提供了技术支持。  相似文献   

13.
新疆某铜铁矿经浮选选铜后,尾矿铁品位在26%左右,由显微镜、X射线衍射分析可知金属矿物主要为赤铁矿(实际为镜铁矿),少量黄铁矿、黄铜矿、铜蓝、辉铜矿、褐铁矿等。为解决现行强磁选回收该铁资源利用率低的问题,进行了磁化焙烧-磁选工艺研究,将原矿中弱磁性的赤铁矿还原为强磁性的磁铁矿,再采用弱磁选获得了品位为58.78%,回收率89.00%的高品质的铁精矿。对实现尾矿的资源化利用,减少尾矿堆放对环境的污染有重要意义。  相似文献   

14.
河南某铁矿矿石中主要铁矿物为镜铁矿和磁铁矿,主要脉石矿物为石英和云母。该矿选矿厂原采用阶段磨矿、阶段选别的弱磁选-高梯度强磁选工艺产出磁铁矿精矿和镜铁矿精矿,但由于难磨且具弱磁性的粗粒含铁云母大量混入镜铁矿精矿,致使镜铁矿精矿的品位低于60%且难以提高,并影响综合精矿品位。为解决这一问题,选矿厂联合广州有色金属研究院开展了相关实验室试验,并根据实验室试验结果,引入GYX21-1210型高频振动细筛和普通型6-S细砂摇床对原选矿工艺流程进行了技术改造,即将原二段高梯度强磁选精矿用细筛按0.074 mm进行筛分,筛下直接作为一部分镜铁矿精矿,筛上经摇床1次选别获得其余镜铁矿精矿,同时抛弃大量尾矿,摇床中矿则返回二段磨矿作业。改造后,镜铁矿精矿和综合铁精矿的铁品位分别达到了60.30%和61.83%,与原流程相比分别提高了3.55和1.98个百分点,同时还使镜铁矿精矿和综合铁精矿的铁回收率分别提高了7.52和7.51个百分点。  相似文献   

15.
为解决酒钢镜铁山镜铁矿竖炉焙烧熟料采用磁滑轮预选-欠烧矿二次焙烧后抛废-磨矿-弱磁选工艺处理所存在的磨矿效率、精矿铁品位和铁回收率均较低等问题,进行了选矿试验研究。结果表明,原料破碎至0~5 mm后经粉矿干选,干选精矿磨矿-弱磁选,干选中矿二次焙烧-磨矿-弱磁选,最终可获得铁品位为58.31%,回收率为84.39%的铁精矿,粉矿干式抛尾产率为7.56%、铁品位为7.75%,需进行二次焙烧的中矿产率为18.03%。与现场生产指标相比,新工艺精矿铁品位高3个百分点左右,铁回收率高2个百分点左右。因此,新工艺是处理现场焙烧矿的合适工艺,具有节能减排、降本提质的效果。  相似文献   

16.
赖伟强 《金属矿山》2017,46(6):94-98
山西某低品位含金镜铁矿铁品位为26.41%、金品位为0.67 g/t。矿石中金主要以自然金形式存在,自然金占总金的88.15%;铁主要存在于赤(褐)铁矿中,赤(褐)铁矿中铁占总铁的68.28%。为回收矿石中有价元素金和铁,进行了优先浮选金,浮选尾矿弱磁选-高梯度强磁选-反浮选回收铁选矿试验。结果表明,在磨矿细度为-0.074 mm占83.78%条件下,以石灰为pH调整剂、水玻璃为分散剂、丁基黄药+丁胺黑药为捕收剂、2#油为起泡剂,经1粗2精2扫浮选,获得了金品位为29.31 g/t、回收率为87.93%的金精矿,选金尾矿经1粗1精1扫弱磁选,获得了铁品位为65.86%、回收率为13.34%的铁精矿1,弱磁选尾矿经1粗1扫高梯度强磁选,强磁选精矿以NaOH为调整剂、改性淀粉为抑制剂、油酸钠为捕收剂,经1粗2精1扫反浮选,获得的铁精矿2铁品位为61.79%、回收率为50.67%,铁精矿1与铁精矿2合并后混合铁精矿铁品位为62.59%、总铁回收率为64.01%。试验结果可以为该矿石有价元素综合回收提供技术依据。  相似文献   

17.
以甘肃地区镜铁矿粉矿为原料, 采用磁化焙烧-弱磁选工艺, 研究了焙烧温度、焙烧时间、还原剂用量、磨矿细度、磁场强度等对磁选效果的影响。结果表明, 在煤粉用量2%、焙烧温度800 ℃、焙烧时间60 min条件下焙烧, 再在磨矿细度-0.074 mm粒级占85.36%、磁场强度92.16 kA/m条件下磁选, 可得到品位为54.95%、回收率为88.92%的弱磁选精矿。  相似文献   

18.
刘兴华  陈雯 《金属矿山》2014,43(5):64-69
为给新疆某低品位细粒磁铁矿的开发利用提供合理的选矿工艺,针对矿石性质的特点,进行了阶段磨矿、阶段弱磁选工艺和阶段磨矿、阶段弱磁选、阳离子反浮选工艺试验。结果表明:①采用3段磨矿、4次弱磁选的阶段磨选工艺流程处理该矿石,在三段磨矿细度为-0.038 mm占95.18%的情况下,可获得铁品位为66.48%、铁回收率为78.79%的铁精矿;采用2阶段磨矿弱磁选、弱磁精矿2阳离子反浮选、反浮选尾矿再磨-弱磁选抛尾后再返回反浮选的流程处理该矿石,在反浮选尾矿再磨细度为-0.038 mm 占96.34%的情况下,可获得铁品位为69.76%、铁回收率为78.51%的铁精矿。②单一弱磁选流程虽然简洁,但弱磁选、阳离子反浮选联合流程在最后一段磨矿量(相对原矿)显著下降22.99个百分点的情况下,最终精矿铁品位却大幅提高3.28个百分点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号