首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of the deposition and CdCl2 doping conditions on the properties of CdTe layers and on the performance of CdTe/CdS/ITO/glass solar cells is reported. Relatively high deposition temperatures (300-350°C) were found to enhance the reproducibility of the optical quality of the CdTe. Oxidation of CdTe layers during air annealing was observed and monitored by XRD. Conventional wet dip and CdCl2 vapour doping of CdTe are compared. Methods for reducing the incidence of pinholes in the CdTe are described, the junction uniformity having been monitored by EBIC. The best solar cell made in this work had an efficiency of 9.87%. (V oc = 0.696V, J sc = 24.1 mA/cm2, FF = 59%).  相似文献   

2.
Control of the initial stage of the CdTe deposition was investigated by modifying the substrate and the source temperature profiles in close-spaced sublimation (CSS) process for improving the performance of CdTe thin film solar cells. In the modified temperature profile, the substrate temperature was increased with higher rate than that of the source temperature. By using the modified temperature profile, the conversion efficiency was improved as compared with the conventional temperature profile, and 15.3% efficiency (Voc: 0.811 V, Jsc: 26.3 mA/cm2, FF: 0.718, 1 cm2, AM 1.5) was achieved.  相似文献   

3.
We have studied the influence of electrolytes on the photovoltaic performance of mercurochrome-sensitized nanocrystalline TiO2 solar cells using LiI, LiBr, and tetraalkylammonium iodides as the electrolyte. Short-circuit photocurrent density (Jsc) and open-circuit photovoltage (Voc) depended strongly on the electrolyte. Jsc of 3.42 mA cm−2 and Voc of 0.52 V were obtained for the LiI electrolyte and Jsc of 2.10 mA cm−2 and Voc of 0.86 V were obtained for the Pr4NI electrolyte. This difference in photovoltaic performance was due to the change in the conduction band level of the TiO2 electrode. Large Voc of 0.99 V was obtained for the LiBr electrolyte due to the large energy gap between the conduction band level of TiO2 and the Br/Br2 redox potential. Solar cell performance also depended strongly on organic solvent, suggesting that the physical properties of solvents such as Li ion conductivity and donor number affect photovoltaic performance.  相似文献   

4.
A comparative study of the cell performance of CIGS thin-film solar cells fabricated using ZnO:Al and ZnO:B window layers has been carried out. ZnO:B films were deposited by RF magnetron sputtering using an undoped ZnO target in a B2H6–Ar gas mixture. The short-circuit current (Jsc) was found to improve upon the replacement of the ZnO:Al layer with ZnO:B layers. This improvement in Jsc is attributed to an increase in quantum efficiency due to the higher optical transmission of the ZnO:B layer in the near-infrared region. The best cell fabricated with a MgF2/ZnO:B/i-ZnO/CdS/CIGS/Mo structure yielded an active area efficiency of 18.0% with Voc=0.645 V, Jsc=36.8 mA/cm2, FF=0.76, and an active area of 0.2 cm2 under AM 1.5 illumination.  相似文献   

5.
This paper reports on a 100 cm2 single crystalline silicon solar cell with a conversion efficiency of 19.44% (Jsc = 37.65 mA/cm2, Voc = 638 mV, FF = 0.809). The cell structure is as simple as only applying the textured surface, oxide passivation, and back surface field by the screen printing method. The comparison between cell performances of the CZ (Czochralski) and FZ (Floating zone) silicon substrates was investigated. The higher efficiency cells were obtained for the FZ substrate rather than the CZ substrate. The influence of the phosphorus concentration of the emitter on the cell efficiency has also been investigated. A good result was obtained when the surface concentration of phosphorus was 3 × 1020 cm−3 and the junction depth was about 0.6 μm.  相似文献   

6.
The transparent electric windows based on dye-sensitized nanocrystalline TiO2 solar cells have been prepared. The solar cell consists of dye-sensitized TiO2 electrode with a TiO2 layer of an about 8 μm thickness and of a 80×80 mm2 active area, Pt counter electrode and redox electrolyte. The solar cell shows a transmittance of approximately 60% in the visible range and an open-circuit voltage (Voc) of 0.64 V and a short-circuit photocurrent (Jsc) of 250 mA. A moderately transparent electric window composed of nine unit solar cells in series generates Voc of 5.7 V and Jsc of 220 mA at one sun light intensity.  相似文献   

7.
CIGS films were treated in In–S aqueous solution for high-efficiency CIGS solar cells. The In–S aqueous solution contained InCl3 and CH3CSNH2 (thioacetamide). The In–S treatment modified the CIGS surface favorably for high-efficiency CIGS solar cells as evidenced by the increase in Voc, Jsc and FF. The In–S treatment formed thin CuInS2 layer on the CIGS surface which contributes to the high efficiency and stable performance of the CIGS solar cell. The best cell showed an efficiency of 17.6% (Voc=0.649 V, Jsc=36.1 mA/cm2 and FF=75.1%) without any annealing and light soaking before IV measurement.  相似文献   

8.
CdS/CdTe solar cells have been prepared by periodic pulse electrodepositionmethod. 10.8% efficient cell was made with open circuit voltage (Voc)≈753mV, short-circuit current (Jsc)≈23.6 mA/cm2 and fill factor (FF)≈0.61. Current-voltage-temperature measurments showed the variation of ideality factor (A) from 1.88 at 344 K to 4.49 at 202 K whereas voltage factor (α) was almost constant above 276 K. The junction transport is possibly dominated by a tunneling mechanism. Capacitance measurements gave the value of diffusion potential as 1.2 eV, ionized charged density as 5.9 × 1015 cm−3 and number of interface states (NIS) as 2.8 × 1011 cm−2 eV−1 at zero volt bias. Measurements of open circuit voltage (Voc) with temperature gave the value of barrier height as 1.42 eV.  相似文献   

9.
We report the effect of CdCl2 vapor treatment on the photovoltaic parameters of CdS/CdTe solar cells. Vapor treatment allows combining CdCl2 exposure time and annealing in one step. In this alternative treatment, the CdS/CdTe substrates were treated with CdCl2 vapor in a close spaced sublimation (CSS) configuration. The substrate temperature and CdCl2 powder source temperature were 400 °C. The treatment was done by varying the treatment time (t) from 15 to 90 min. Such solar cells are examined by measuring their current density versus voltage (J-V) characteristics. The open-circuit voltage (Voc), short circuit current density (Jsc) and fill factor (FF) of our best cell, fabricated and normalized to the area of 1 cm2, were Voc = 663 mV, Jsc = 18.5 mA/cm2 and FF = 40%, respectively, corresponding to a total area conversion efficiency of η = 5%. In cells of minor area (0.1 cm2) efficiencies of 8% have been obtained.  相似文献   

10.
CuInSe2/CdS thin-film heterojunction solar cells were fabricated entirely by chemical bath deposition technique. The illuminated JV characteristics of the devices prepared with different thicknesses of CdS and CuInSe2 were studied. The typical solar cell parameters obtained for the best cell are: Voc = 365 mV, Jsc = 12 mA/cm2, FF = 61%, and η = 3.1% under an illumination of 85 mW/cm2 on a cell of active area 0.1 cm2. The JV and CV characteristics under dark condition and the spectral response were also studied for the best cell. The diode quality factor obtained is 1.7.  相似文献   

11.
We have succeeded in obtaining excellent Back Surface Field (BSF) structures by depositing a highly doped silicon layer on the back side of the substrate even though the textured wafer is used. The substantial increase of the spectral response in longer wavelength has been observed and an increase of Voc has also been found. The BSF formation technology, together with the low temperature grown thin a-Si emitter layer with appropriate bandgap, has enabled us to obtain a very high Jsc of 40.5 mA/cm2, thus a high active area conversion efficiency of 18.9 % (Voc = 0.592 V, FF = 0..789).  相似文献   

12.
When a CuInS2/CdS solar cell was fabricated by depositing CdS thin film with dopant In of 1.0 at% on ternary compound CuInS2 thin film with the lowest resistivity of 5.59 × 10−2 Ωcm, its best result was as follows: Voc = 461 mV, Isc = 26.9 mA, FF = 0.685, η = 5.66% under the illumination of 100 mW/cm2. And its series resistance and lattice mismatch was 5.1 Ω and 3.2%, respectively.Besides, a 4 layer structure solar cell of -CuInS2/high -CuInS2/high -CdS/low - CdS has been fabricated. When thickness of high - CuInS2 was 0.2 μm, its best result was as follows: Voc = 580 mV, Isc = 30.6 mA, FF = 0.697, η = 8.25%. An its series resistance and lattice mismatch were 4.3 Ω and 2.8%, respectively.  相似文献   

13.
We report on boron-doped μc-Si:H films prepared by hot-wire chemical vapor deposition (HWCVD) using silane as a source gas and trimethylboron (TMB) as a dopant gas and their incorporation into all-HW amorphous silicon solar cells. The dark conductivity of these films was in the range of 1–10 (Ω cm)−1. The open circuit voltage Voc of the solar cells was found to decrease from 840 mV at low hydrogen dilution H-dil=91% to 770 mV at high H-dil =97% during p-layer deposition which can be attributed to the increased crystallinity at higher H-dil and to subsequent band edge discontinuity between μc-Si:H p- and amorphous i-layer. The short circuit current density Jsc and the fill factor FF show an optimum at an intermediate H-dil and decrease for the highest H-dil. To improve the conversion efficiency and the reproducibility of the solar cells, an amorphous-like seed layer was incorporated between TCO and the bulk p-layer. The results obtained until now for amorphous solar cells with and without the seed layer are presented. The I–V parameters for the best p–i–n solar cell obtained so far are Jsc=13.95 mA/cm2, Voc=834 mV, FF=65% and η=7.6%, where the p-layers were prepared with 2% TMB. High open circuit voltages up to 847 mV could be achieved at higher TMB concentrations.  相似文献   

14.
An over 10% efficient electrodeposited CdS/CdTe solar cell has been prepared after CdCl2 treatment. The open circuit voltage, Voc, short-circuit current, Jsc and fill factor, FF were 758 mV, 21 mA cm−2 and 0.65 respectively. The diode factor calculated from current-voltage-temperature measurements changed from 1.54 at 324 K to 2.64 at 146 K. The voltage factor, α ranged from 22.83 at 324 K to 29.46 at 146 K. Data from current-voltage-temperature measurements agrees with the model of Miller and Olsen and indicates that the current transport was a combination of tunneling and interface recombination. Capacitance-voltage-temperature measurements showed that capacitance decreased with increasing frequency and increased with temperature. Capacitance was insensitive to temperature indicating an intrinsic or low-doped depletion layer. The density of interface states was found to be 6.4 × 1010 cm−2 eV−1 at 293 K. The carrier concentration of CdTe calculated from Mott-Schottky plot was 1.5 × 1016 cm−3.  相似文献   

15.
We have fabricated 4 cm2 solar cells on String Ribbon Si wafers and edge-defined film-fed grown (EFG) Si wafers with using a combination of laboratory and industrial processes. The highest efficiency on String Ribbon Si wafer is 17.8% with an open circuit voltage (Voc) of 620 mV, a short circuit current density (Jsc) of 36.8 mA/cm2 and a fill factor (FF) of 0.78. The maximum efficiency on EFG Si is 18.2% with a Voc of 620 mV, a Jsc of 37.5 mA/cm2 and a FF of 0.78. These are the most efficient ribbon Si devices made to date, demonstrating the high quality of the processed Si ribbon and its potential for industrial cells. Co-firing of SiNx and Al by rapid thermal processing was used to boost the minority carrier lifetime of bulk Si from 3–5 μs to 70–100 μs. Photolithography-defined front contacts were used to achieve low shading losses and low contact resistance with a good blue response. The effects of firing temperature and time were studied to understand the trade-off between hydrogen retention and Al-doped back surface field (Al-BSF) formation. Excellent bulk defect hydrogenation and high-quality thick Al-BSF formation was achieved in a very short time (1 s) at firing temperatures of 740–750 °C. It was found that the bulk lifetime decreases at annealing temperatures above 750 °C or annealing time above 1 s due to dissociation of hydrogenated defects.  相似文献   

16.
The phosphorus-doped amorphous carbon (n-C:P) films were grown by r.f. power-assisted plasma-enhanced chemical vapor deposition at room temperature using solid phosphorus target. The influence of phosphorus doping on material properties of n-C:P based on the results of simultaneous characterization are reported. Moreover, the solar cell properties such as series resistance, short circuit current density (Jsc), open circuit current voltage (Voc), fill factor (FF) and conversion efficiency (η) along with the spectral response are reported for the fabricated carbon based n-C:P/p-Si heterojunction solar cell were measured by standard measurement technique. The cells performances have been given in the dark I–V rectifying curve and I–V working curve under illumination when exposed to AM 1.5 illumination condition (100 mW/cm2, 25 °C). The maximum of Voc and Jsc for the cells are observed to be approximately 236 V and 7.34 mA/cm2, respectively for the n-C:P/p-Si cell grown at lower r.f. power of 100 W. The highest η and FF were found to be approximately 0.84% and 49%, respectively. We have observed the rectifying nature of the heterojunction structures is due to the nature of n-C:P films.  相似文献   

17.
Organic solar cells were fabricated with two new imidazolin-5-one molecules as active layers. The use of imidazolin-5-ones, derivatives of a biomolecule chromophore, for photovoltaic applications is particularly attractive due to its biodegradable nature and tunable properties. Single-layer devices with two analogues of imidazolin-5-ones were prepared and characterized. Devices fabricated with one of the molecules as the active layer showed a maximum Jsc of 0.52 μA cm−2 and Voc of 0.68 V at an incident power of 20.32 mW cm−2, while the other set of devices showed a maximum Jsc of 0.63 μA cm−2 and Voc of 0.57 V at the same incident power.  相似文献   

18.
Improved preparation process of a device quality Cu(In,Ga)Se2 (CIGS) thin film was proposed for production of CIGS solar cells. In–Ga–Se layer were deposited on Mo-coated soda-lime glass, and then the layer was exposed to Cu and Se fluxes to form Cu–Se/In–Ga–Se precursor film at substrate temperature of over 200°C. The precursor film was annealed in Se flux at substrate temperature of over 500°C to obtain high-quality CIGS film. The solar cell with a MgF2/ITO/ZnO/CdS/CIGS/Mo/glass structure showed an efficiency of 17.5% (Voc=0.634 V, Jsc=36.4 mA/cm2, FF=0.756).  相似文献   

19.
CuGaSe2–GaAs heterojunctions were fabricated by fast evaporation of polycrystalline CuGaSe2 from a single source on n-type GaAs substrates. The best CuGaSe2–GaAs photocell (without an antireflective coating) exhibited an efficiency of 11.5%, Jsc=32 mA/cm2, Voc=610 mV and FF=0.60. The spectral distribution of photosensitivity of CuGaSe2–GaAs junctions extends from 400 to 900 nm. The CuGaSe2 films were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) techniques. XRD analysis indicated that the thin films were strongly oriented along the (1 1 2) plane. SEM studies of CuGaSe2 films showed nearly stoichiometric composition with grain size about 1–2 μm. The energy dispersive X-ray spectroscopy (EDX) analysis of Cu concentration distribution in n-type GaAs showed that Cu diffused from the film into n-type GaAs during the growth process resulting in formation of the latent p–n homojunction in substrate. The diffusion coefficient of Cu in GaAs at growth temperature (520°C) estimated from EDX measurements was 6×10−8 cm2/s.  相似文献   

20.
a-SiOx films have been prepared using silane and pure oxygen as reactive gases in plasma CVD system. Diborane was introduced as a doping gas to obtain p-type conduction silicon oxide. Infrared absorption spectra show the incorporation of Si–O stretch mode around 1000 cm−1. The optical bandgap increases with the oxygen to silane gas ratio, while the electrical conductivity decreases. Hydrogenated amorphous silicon solar cells have been fabricated using p-type a-SiOx with around 1.85 eV optical bandgap and conductivity greater than 10−7 S/cm. The measured current–voltage characteristics of the solar cells under 100 mW/cm2 artificial light are Voc=0.84 V, Jsc=14.7 mA/cm2, FF=0.635 with a conversion efficiency of 7.84%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号